• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 152
  • 30
  • 22
  • 9
  • 8
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 476
  • 90
  • 64
  • 58
  • 50
  • 44
  • 39
  • 38
  • 36
  • 36
  • 34
  • 34
  • 32
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Investigation of Microalgae Growth Kinetics Using Coal-Fired Flue Gas as a Carbon Source

Brooker, Bryan Daniel 01 June 2011 (has links) (PDF)
ABSTRACT Investigation of Microalgae Growth Kinetics using Coal-Fired Flue Gas as a Carbon Source Bryan Daniel Brooker Energy related carbon dioxide (CO2) emissions make up the majority of the United States’ greenhouse gas emissions. Emissions must be alleviated to reduce the effects of global climate change. Microalgae cultivation sequesters CO2 while producing biomass. Algal biomass can provide a renewable feedstock for biofuel and electricity production, and ingredients for pharmaceuticals, nutraceuticals, pigments and cosmetics. Utilizing microalgae to mitigate CO2 emissions encourages energy independence by providing a feedstock for biofuels and offers other potentially profitable avenues for the uses of biomass. This study focused on investigating the algal growth kinetics of microalgae cultivated with artificial coal-fired flue gas. Two algal strains, Chlorella vulgaris and Tetraselmis sp. were cultivated in lab scale photobioreactors to assess the feasibility of using flue gas as a carbon source for microalgae growth. The microalgae growth kinetics were compared between flue gas and pure CO2 treatments for each algal strain. Both microalgae species were able to grow under flue gas dosing. The differences in growth characteristics for Chlorella were statistically insignificant between the two gas dosing treatments. Tetraselmis yielded identical maximum specific growth rates among the two gas treatments, while the biomass production was greater using CO2. At a 95% confidence interval, the difference in biomass production between the gas treatments ranged from 45 to 225 mg/L. The decrease in biomass production for Tetraselmis was the only sign of growth inhibition from flue gas. Overall, Chlorella vulgaris and Tetraselmis sp. are capable of fixating CO2 from coal-fired flue gas.
172

Mixotrophic Production of Omega-3 Fatty Acid-rich Alga Phaeodactylum tricornutum on Biodiesel-derived Crude Glycerol

Woisard, Kevin Keith 05 January 2011 (has links)
Crude glycerol is the major byproduct of the biodiesel industry. There is an abundance of this byproduct and purifying it for use in industries such as food, pharmaceutical, or cosmetic is prohibitively expensive. Developing an alternative use for crude glycerol is needed. Utilizing it as a carbon source in the fermentation of algae is one potential method for using this under-utilized byproduct. In this research, crude glycerol is used in the mixotrophic production of the alga, Phaeodactylum tricornutum, which is an eicosapentaenoic acid (EPA) producing diatom. Mixotrophic growth is when cells perform autotrophic and heterotrophic modes of growth concurrently. EPA is an omega-3 polyunsaturated fatty acid that has been demonstrated to have a multitude of beneficial health effects, including maintaining human cardiovascular health, treating cancer and human depression diseases, and an anti-obesity effect. In this study, the potential of using crude glycerol in batch mode mixotrophic culture of P. tricornutum was investigated. Once the mixotrophic culture was established, parameters involved in increasing the biomass and EPA production were optimized. These included nitrogen source, level of supplemental carbon dioxide, and concentration of crude glycerol. Using nitrate, 0.08 M crude glycerol, and 3% (vol/vol) carbon dioxide led to the highest biomass productivity of 0.446 g L?? day?? and the highest EPA productivity of 16.9 mg L?? day?? in batch mode culture. The continuous culture of the mixotrophic culture was then performed following the batch culture optimization. The effects of dilution rate were observed in continuous culture with the parameters of nitrate as the nitrogen source, 0.08 M crude glycerol, and 3% (vol/vol) carbon dioxide held constant. The highest biomass productivity of 0.612 g L?? day?? was obtained at D = 0.24 day??. The highest EPA productivity of 16.5 mg L?? day?? was achieved at both D = 0.15 day?? and D = 0.24 day??. The maximum specific growth rate was estimated from the washing out dilution rate and was determined to be around 0.677 day??. Overall, it was found that crude glycerol increases the biomass and EPA productivity of Phaeodactylum tricornutum. Continuous culture with the use of crude glycerol can further increase these measurements. The potential for scaling up studies is demonstrated by these results and can help lead to a market for this abundant, little-used byproduct of the biodiesel industry. / Master of Science
173

Producing Omega-3 Polyunsaturated Fatty Acids from Biodiesel Waste Glycerol by Microalgae Fermentation

Ethier, Shannon Elizabeth 16 June 2010 (has links)
Crude glycerol is a major byproduct if the biodiesel industry. Biodiesel manufacturers are currently facing the challenges of appropriate disposal of this waste material. Crude glycerol is expensive to purify for use in food, cosmetic, and pharmaceutical industries and therefore, alternative methods for use of this crude glycerol are needed. A promising alternative is to use this crude glycerol as a carbon source for microalgae fermentation. In this project, we investigated the use of crude glycerol as a less expensive substrate for the fermentation of the microalgae <i>Schizochytrium limacinum</i> and <i>Pythium irregulare</i> which are prolific producers of omega-3 polyunsaturated fatty acids. Omega-3 fatty acids have many beneficially effects on treating human diseases such as cardiovascular diseases, cancers, and neurological disorders. In addition, the omega-3 fatty acids docosahexaenoic acid (DHA) has been shown to be an important factor in infant brain and eye development. The first part of this study focused on the continuous fermentation of <i>S. limacinum</i>, a prolific producer of DHA. The objective of this study was to examine the algal cellular physiology and maximize its DHA productivity. Two important parameters used in continuous fermentation were studied: dilution rate (D) and feed glycerol concentration (S₀). The highest biomass productivity of 3.88 g/L-day was obtained at D = 0.3 day⁻¹ and S₀ = 60 g/L, while the highest DHA productivity (0.52 g/L-day) was obtained at D = 0.3 day⁻¹ and S₀ = 90 g/L. The cells had a true growth yield of 0.283 g/g, a maximum specific growth rate of 0.692 day⁻¹, and a maintenance coefficient of 0.2216 day⁻¹. The second part of this study focused on morphology issues with <i>P. irregulare</i>, a prolific producer of eicosapentaenoic acid (EPA). <i>P. irregulare</i> has a filamentous morphology, which can make fermentation difficult. The mycelium can stick to the agitation blades resulting in mechanical problems. In addition, this filamentous morphology prevents adequate amounts of oxygen from reaching some cells resulting in decreased productivities. The focus of this research was to control the fermentation conditions to make the algae grow in small pellets, a morphology more suitable for fermentation. In flask culture studies, pellets were formed at an agitation speed of 110 rpm in both regular and baffled flasks. Baffled flasks resulted in pellet formation at 90 and 130 rpm as well. Fermentation studies resulted in pellet formation at agitation speeds of 150 and 300 rpm. Pellets were better able to form when a baffle was not in place. In addition, agitation speed influenced pellet size, with smaller pellets forming at the higher agitation speed. Overall, this study showed that crude glycerol can be used as a carbon source for the continuous fermentation of <i>S. limacinum</i> with high DHA productivity and the morphology of <i>P. irregulare</i> could be controlled by manipulating culture conditions, mainly agitation speed. These results show the potential for scale-up studies for both algal species. / Master of Science
174

Investigation of microalgae cultivation and anaerobic codigestion of algae and sewage sludge for wastewater treatment facilities

Wang, Meng 01 May 2013 (has links)
The main goals of this research are to investigate the anaerobic digestibility of algae and to investigate the effects of growth media on the growth rates, nutrient removal kinetics, and extracellular polymeric substances (EPS) characteristics of wild type green algae. Anaerobic co-digestion of algae with sewage sludge is proposed to improve the digestibility of algae. It is hypothesized that the addition of sewage sludge improves the hydrolysis rate of algae, which is often the rate-limiting step for anaerobic digestion. It is also hypothesized that the composition and concentration of nutrients in growth media will affect the kinetics of nutrient removal and the content of EPS, which will influence algae flocculation and subsequent anaerobic digestion. In this research, algae collected from a local wastewater treatment plant were cultivated in synthetic medium, primary wastewater effluent and pure or diluted anaerobic sludge centrate. Light cycles and the level of CO2 addition were varied at different stages of cultivation for nutrient removal and physiochemical properties of algae. Harvested algae were then anaerobically co-digested with varying proportions of sewage sludge under mesophilic condition. Results showed that when algae were digested alone (i.e. no sludge addition) with a small amount of seed sludge, algae were poorly digested. When algae were co-digested with sewage sludge, the gas yield was improved and the gas phase (CH4 generation) was reached faster. The biogas yield of algae increased to a comparable level to that of digestion of waste sludge when 44% (by VS) of seed sludge was inoculated for digestion. The addition of sewage sludge improved the hydrolysis rate and the overall digestibility of algae. Algae grown in primary effluent, which had a balanced N/P ratio showed a higher nutrient removal efficiency. The P-limitation in sludge centrate led to lower nutrient removal efficiency and higher EPS production compared to algae grown in primary effluent, indicating that sludge centrate was a harsher medium for algae growth. In conclusion, microalgae can grow in primary effluent and anaerobic sludge centrate for nutrient removal. Anaerobic co-digestion of algae withwaste sludge was strongly recommended to enhance the biogas generation.
175

Biosorption of Heavy Metal Ions by Microalgae: Mechanisms and Conditioning

Gu, Siwei 27 November 2023 (has links)
Wastewater contaminated with heavy metal ions (HMIs), stemming from human activities and natural disasters, poses substantial threats to both the environment and human health. The unchecked release of untreated wastewater into natural water bodies leads to severe pollution, upsetting ecological balance. To address this pressing challenge, microalgae-based biosorption technology has emerged as a promising solution for the efficient removal of HMIs from wastewater. Microalgae, with their extensive surface area and intricate cell wall structures, exhibit remarkable efficacy in HMIs biosorption. This thesis aims at elucidating the fundamental principles governing the interactions between HMI and microalgal cells to help enhance the biosorption capacity of HMI by microalgae from two perspectives: 1) conditioning of biomass by either optimizing the cultivation conditions or downstream processing; and 2) conditioning of the biosorption process for optimal performance of given algal biomass. It was demonstrated that among the tested cultivation conditions, i.e., culture pH, phosphate concentration, nitrate concentration, and dissolved inorganic carbon (DIC) conditions, which all have significant impacts on cell surface structure and therefore biosorption of HMI, DIC is the most significant factor. Furthermore, it was demonstrated that downstream processing of biomass such as lipid extraction with sonication for cell disruption could help enhance specific surface area and removal of lipids from cell wall surfaces, resulting in remarkably elevated HMI biosorption capacities. As for research on biosorption mechanisms, a correlation between HMI properties, i.e., ionic radius and electronegativity, and their biosorption capacities onto certain microalgal biomass, was established, which was validated with both experimental data and literature data. Furthermore, systematic studies on biosorption kinetics, isotherm, and thermodynamics, as well as cell surface characterization, and determination of HMI intracellular and extracellular contents of cells after biosorption were carried out, which converged on the conclusion that biosorption was predominantly monolayer surface adsorption. A mathematical model was proposed and validated, which is a rigid model accounting for the effects of cell size and HMI radius only. Analysis of model differentiation from experimental data led to the hypothesis that the nanostructures on cells, mostly like pili, were the major locations where binding sites for HMI were housed. This research represents a significant step towards ensuring the responsible and sustainable use of microalgae for environmental engineering, promising a cleaner and healthier future.
176

Effect of Glucose Supplementation on Nighttime Biomass Loss and Productivity of Microalgae Chlorella

Shah, Dhruvesh 23 May 2012 (has links)
No description available.
177

Rapid High-Throughput Screening Methods for Monitoring Electron Transfer Reactions in Biological Systems and Microalgae Phenotyping

Scherr, David Michael 01 June 2021 (has links)
Reducing equivalents were extracted from in vitro photosynthesis and used to drive cell-free and enzyme-free biochemical reduction reactions in this research. To investigate photosynthetic electron flow, an algal extract dense in chloroplasts was made from the microalga Scenedesmus sp. A6. The algal extract was subjugated to a variety of environmental parameters and exogenous quinones in order to optimize electron extraction. To monitor electron extraction and donation to metabolites, a novel assay was created that monitored the chemiluminescence (CL) produced by superoxide radicals formed during the process. In particular, these formed when a reduced exogenous quinone oxidized spontaneously. Our studies found that calcium chloride improved the reduction of low redox potential mediators along with prolonged exposure to red light. Other salts and environmental conditions examined had diverse effects on the quinones based on structure, redox potential, and site of electron extraction. We next applied our assay for monitoring the reduction of different metabolites. The CL recorded for different metabolites was compared to the Gibbs free energy of reduction and a highly correlated relationship was found. The assay was then applied to the reduction of metabolites via the oxidation of glucose in an alkaline environment. To exhibit the diverse application of the CL assay, urine of healthy individuals, patients with chronic kidney disease (CKD), and patients with bladder cancer (BCa) were characterized through their interactions with different quinones. The CL output was compared to that of SurineTM and urea followed by ANOVA analysis. Statistically significant differences were found for all quinones with 1,2-napthoquinone-4-sulfonate (NQS) producing significant differences between all groups examined. Monitoring algal phenotypes for biofuels or photosynthetic output requires arduous protocols and advanced instrumentation. Both of these energy producing options were explored along with rapid, high-throughput protocols for measuring reduction reactions. To monitor the phenotypes and health of our microalgae, Raman microscopy was applied to algal cultures of Scenedesmus sp. A6 grown under stress. Statistically unique phenotypes were found based on environmental factors during cell growth. ANOVA analysis determined the effect of stressors that caused significant change to algal phenotypes related to photosynthesis and lipids. / Doctor of Philosophy / Photosynthesis is the process by which plants and algae harness sunlight to convert CO2 to plant mass. Photosynthesis is performed in the chloroplast which can excite electrons and use them to generate energy. Detecting how much energy a chloroplast can produce and what chemicals effect the chloroplast requires complex procedures with complicated instruments. In this thesis the chloroplast from the microalgae Scenedesmus sp. A6 were isolated to evaluate how they are affected by different chemicals in the environment using a new, rapid and robust assay. Then, a group of chemicals called quinones were used to steal electrons (plant energy), and this process was optimized in this research. The purpose of stealing this plant energy from photosynthesis was so it could be re-directed into synthesizing valuable chemicals that are normally produced from fossil fuels. A new sensor was also developed in this research that would "light-up" the environment whenever this plant energy (electron) stealing process was successful allowing us to measure the efficiency of this energy transfer. Once a quinone stole an electron, it would spontaneously give up the electron to oxygen, creating an unstable molecule that could then react with the chemical luminol, forming a strong luminescence (light) signal. We found that calcium chloride greatly enhanced a quinone's ability to harvest electrons from the chloroplast. We also reported unique effects caused by salt, magnesium, phosphate, a mild detergent, and changing the amount of light the chloroplast would receive. This information was then used to transfer electrons from the chloroplast to make new valuable chemicals. We found that electrons could be donated to multiple chemicals using a quinone, chloroplasts, and light. We were also able to take electrons from glucose with our quinones when glucose was in an environment with a high pH. Electrons from glucose could also be donated to chemicals of interest using quinones. In addition, Quinones were used once more to find differences in the urine composition of healthy individuals and those with chronic kidney disease or bladder cancer. The urine from healthy individuals produced a unique luminescence signal when interacting with the quinones. Thus, quinones could be used for rapidly detecting changes in a patient's kidney and bladder function. We also developed a new method for detecting changes in the health of an algal culture. Algal cultures are used for producing biofuel, food, and pharmaceuticals, therefore it is imperative to track the growth of a culture to avoid contamination and algal death. Scenedesmus sp. A6 was exposed to chemicals harmful to algal health to see how these chemicals caused the algae to grow differently. Raman spectroscopy was used to collect data on algae grown under different conditions. The Raman spectra obtained then underwent statistical analysis to determine the chemicals that had the greatest impact on algal function. Methyl viologen, nickel sulfate, salt, and light exposure had the greatest impact on the algae.
178

Discovery of a Novel Microalgal Strain Scenedesmus Sp. A6 and Exploration of Its Potential as a Microbial Cell Factory

Guimaraes Braga da Silva, Pedro Ivo 14 August 2018 (has links)
Microalgae are photosynthetic organisms considered to be one of the most promising high-value chemicals and biofuel-producing organisms. However, there are several challenges for the widespread implementation of industrial processes using microalgae. The work presented in this dissertation proposes solutions to the different challenges involving the use of microalgae as microbial cell factories. To investigate the application of anaerobic digestion as a way to generate nutrients for microbial growth, salmon offal was used as substrate for anaerobic digestion, and soil from a flooded run-off pond on the Virginia Tech campus in Blacksburg, VA. A fast reduction in volatile solids and the short-chain fatty acid production profile is favorable for the growth of microalgae. A novel algae strain Scenedesmus sp. A6 was isolated from a decorative waterfountain in a hotel in Madison, IN. Mixotrophic growth trials were conducted using wastewater from the salmon offal digestion, that demostrated the A6 isolate grows six times faster in the wastewater then autotrophically. Bioassays of ethanolic cell extracts of A6 cultures demonstrated antimicrobial activity against E. coli cells at concentrations above 50 µg/ml. Genome sequencing and assembly revealed multiple copies of genes involved with acetate and ammonia metabolism, and several genes involved with secondary metabolite synthesis. An alternative to the high capital investment of photobioreactors for the cultivation of microalgae is the use of open-source and open-hardware bioreactor controller. Here, the concept of an open-hardwate bioreactor control called ``BioBrain'' is introduced. The BioBrain device is based on the Arduino Mega micro-controller board, and is capable of monitoring and controlling culture conditions during simple strain characterization studies, with an estimated construction cost of less than $800 USD. Finally, a new primer design tool for the ligation-independant cloning technique 𝜆-PCR was developed called lambdaPrimeR. The contributions of this work are the discovery and development of different tools that can overcome the challenges of the use of microalgae as microbial cell factories in industrial processes. / Ph. D. / Microalgae are single-celled organisms capable of photosynthesis and have the potential to revolutionize fuel and high-value chemical production. However, the high process costs involving the cultivation and biomass harvesting of these organisms limits the number of industrial applications of microalgae. Therefore, reduction of the overall costs of any process involving microalgae is vital for the widespread use of these organisms in industry. On this dissertation, I explore different approaches to tackle the challenges of using microalgae as a high-value chemicals cell factories. First, the use of anaerobic digestion of salmon offal to generate low-cost nutrients for algae growth is successfully demonstrated, with the discovery of a novel algae isolate Scenedesmus sp. A6, capable of very robust growth on the anaerobic digestion wastewater. Further characterization of this novel isolate showed that it has antimicrobial activity against E. coli cells. Therefore, the Scenedesmus sp. A6 isolate has the potential to be used as a high-value chemical cell factory. Reduction in equipment and instrumentation costs was also achieved by the design and construction of an open-hardware and open-source bioreactor controller device called the “BioBrain”, and a low-cost modular bubble column photobioreactor called “The Big Large Tube”. Together, these two devices represent a significant reduction in equipment costs for the cultivation of microalgae. Finally, an open-source Bioinformatics tool called “lambdaPrimeR” was developed to facilitate the use of a novel Genetic Engineering technique called λ-PCR, that has the potential to make genetic engineering of microalgae much easier.
179

Nutrient removal from an anaerobic membrane bioreactor effluent using microalgae. Study and modeling of the process

Ruiz Martínez, Ana 07 January 2016 (has links)
Tesis por compendio / [EN] Anaerobic membrane bioreactors for urban wastewater treatment present interesting advantages when compared with aerobic treatments, such as less sludge production, lower energy demand and biogas generation. However, the generated effluent cannot generally be discharged without further ammonium and phosphate elimination. This thesis studies the removal of these inorganic nutrients by means of microalgae cultivation. The main objective of this work is therefore to obtain an autochthonous microalgal culture and to investigate its ability to grow on an already existing anaerobic effluent, as well as to research the extent to which ammonium and phosphate can be removed. Moreover, this thesis aims at providing the kinetic expressions which reproduce the main processes involved, in order to provide the basis for process simulation and design. Microalgae were isolated from a local wastewater treatment plant and their ability to grow on the anaerobic effluent -while successfully removing ammonium and phosphate- was demonstrated. An excellent water quality was obtained with a semicontinuous cultivation mode under constant illumination. The Scenedesmus and Chlorococcum genus proliferated more efficiently and thus became predominant in the culture. Results also showed that phosphorus was the limiting nutrient in the anaerobic effluent to be treated. The influence of phosphorus limitation on ammonium and phosphate removal, as well as the influence of temperature in ammonium removal, were then studied under laboratory conditions. Kinetic expressions which reproduce the observed effects were proposed and validated, taking also into account the effect of light intensity. Additionally, a Scenedesmus-dominated culture was grown under varying light and temperature in an outdoor flat-plate photobioreactor, with constant monitoring of light intensity, temperature and ammonium concentration. Acceptable results were obtained in the reproduction of the experimental data, albeit with less accuracy than under laboratory conditions. The work here presented demonstrates the feasibility of coupling a microalgal cultivation system to an anaerobic membrane bioreactor for urban wastewater treatment. The basic factors affecting microalgal nutrient removal are researched, and mathematical models are provided which reproduce these effects. This Ph.D. thesis is enclosed in a national research project funded by the Spanish Ministry of Economy and Competitiveness entitled "Estudio experimental de la recuperación como biogás de la energía de la materia orgánica y nutrientes del agua residual, acoplando un AnBRM y un cultivo de microalgas" (MINECO project CTM2011-28595-C02-01/02). This research was also supported by the Spanish Ministry of Education, Culture and Sport via a pre doctoral FPU fellowship to the author (AP2009-4903) / [ES] En el tratamiento de aguas residuales urbanas, los bioreactores anaerobios de membranas presentan ventajas interesantes frente a los tratamientos aerobios. Algunas de estas ventajas son la menor producción de fangos, un menor consumo energético y la producción de biogás. Sin embargo, y generalmente, el efluente obtenido no puede ser vertido al medio sin una etapa previa de eliminación de amonio y fosfato. La presente tesis estudia la eliminación de dichos nutrientes inorgánicos empleando para ello un cultivo de microalgas. El objetivo principal de este trabajo es, por tanto, la obtención de un cultivo autóctono de microalgas y la evaluación de la capacidad que éstas tienen tanto de crecer en un efluente anaerobio como de eliminar el amonio y el fosfato presentes. Asimismo, se pretenden proporcionar las bases para la simulación y el diseño del sistema de depuración propuesto, mediante la obtención de las expresiones cinéticas que reproducen los principales procesos involucrados. En primer lugar se ha demostrado la capacidad de las microalgas, aisladas en una estación depuradora de aguas residuales, de crecer en el efluente anaerobio y de eliminar con éxito el amonio y fosfato en éste presente. El agua tratada, obtenida a mediante un proceso semicontinuo y con iluminación constante, presenta una excelente calidad. Los géneros Scenedesmus y Chlorococcum han proliferado más eficientemente y han llegado a ser los predominantes en el cultivo. Los resultados obtenidos indican que el nutriente limitante en el efluente a tratar es el fósforo, y por tanto la influencia de la limitación de fósforo en la eliminación de nutrientes ha sido estudiada en condiciones de laboratorio, junto con la influencia de la temperatura en la velocidad de eliminación de amonio. Han sido propuestas y validadas las correspondientes expresiones cinéticas que reproducen los efectos observados, teniendo en cuenta en todo momento la influencia de la intensidad de la luz. Por otro lado, un cultivo de Scenedesmus ha sido cultivado en el exterior, bajo condiciones cambiantes de luz y temperatura, que a su vez han sido monitorizadas constantemente, junto con la concentración de amonio. Los datos obtenidos han sido reproducidos mediante modelación matemática con resultados aceptables, aunque la precisión obtenida es menor que en condiciones de laboratorio. La presente tesis demuestra la viabilidad de combinar un cultivo de microalgas con un bioreactor de membranas para el tratamiento de agua residual urbana. Se exponen asimismo los factores básicos que influyen en la velocidad de eliminación de nutrientes, y se presentan los modelos matemáticos necesarios para reproducir los efectos observados. La presente tesis doctoral se incluye en el marco de un proyecto nacional de investigación financiado por el Ministerio de Economía y Competitividad de título "Estudio experimental de la recuperación como biogás de la energía de la materia orgánica y nutrientes del agua residual, acoplando un AnBRM y un cultivo de microalgas" (CTM2011-28595-C02-01/02). La presente tesis doctoral ha sido también financiada por el Ministerio de Educación, Cultura y Deporte a través de una ayuda para contratos predoctorales de Formación del Profesorado Universitario (AP2009-4903). / [CA] En el tractament d'aigües residuals urbanes, els bioreactors anaerobis de membrana tenen avantatges interessants respecte als tractaments aerobis. Alguns d'aquests avantatges són: menys producció de fangs, menys consum energètic i la producció de biogàs. No obstant això, i en general, l'efluent obtingut no es pot tornar al medi sense una etapa prèvia d'eliminació d'amoni i fosfat. Aquesta tesi estudia l'eliminació d'aquests nutrients inorgànics emprant per a fer-ho un cultiu de microalgues. L'objectiu principal d'aquest treball és, per tant, l'obtenció d'un cultiu autòcton de microalgues i l'avaluació de la capacitat que aquestes tenen tant de créixer en un efluent anaerobi com d'eliminar l'amoni i el fosfat presents. Així mateix, volem proporcionar les bases per a la simulació i el disseny del sistema de depuració proposat, mitjançant l'obtenció de les expressions cinètiques que reprodueixen els principals processos involucrats. En primer lloc, s'ha demostrat la capacitat de les microalgues, aïllades en una estació depuradora d'aigües residuals, de créixer en l'efluent anaerobi i d'eliminar amb èxit l'amoni i el fosfat presents. L'aigua tractada, obtinguda mitjançant un procés semicontinu i amb il·luminació constant, presenta una qualitat excel·lent. Els gèneres Scenedesmus i Chlorococcum han proliferat més eficientment i han arribat a ser els predominants en el cultiu. Els resultats obtinguts indiquen que el nutrient limitant en l'efluent per tractar és el fòsfor, i per tant la influència de la limitació de fòsfor en l'eliminació tant d'amoni com de fosfat ha sigut estudiada en condicions de laboratori, juntament amb la influència de la temperatura en la velocitat d'eliminació d'amoni. S'han proposat i validat les expressions cinètiques corresponents que reprodueixen els efectes observats, tenint en compte en tot moment la influència de la intensitat de la llum. D'altra banda, s'ha cultivat a l'exterior un cultiu predominat per Scenedesmus, sota condicions canviants de llum i temperatura, que al seu torn s'han monitorat constantment, juntament amb la concentració d'amoni. Les dades obtingudes s'han reproduït mitjançant simulació matemàtica amb resultats acceptables, encara que la precisió obtinguda és més baixa que en condicions de laboratori. La nostra tesi demostra la viabilitat de combinar un cultiu de microalgues amb un bioreactor de membrana per al tractament d'aigua residual urbana. La tesi exposa així mateix els factors bàsics que influeixen en la velocitat d'eliminació de nutrients, i presenta els models matemàtics necessaris per a reproduir els efectes observats. Aquesta tesi doctoral s'inclou en el marc d'un projecte nacional de recerca finançat pel Ministeri d'Economia i Competitivitat amb el títol "Estudio experimental de la recuperación como biogás de la energía de la materia orgánica y nutrientes del agua residual, acoplando un AnBRM y un cultivo de microalgas" (CTM2011-28595-C02-01/02). La tesi doctoral ha sigut també finançada pel Ministeri d'Educació, Cultura i Esport a través d'una ajuda per a contractes predoctorals de formació del professorat universitari (AP2009-4903). / Ruiz Martínez, A. (2015). Nutrient removal from an anaerobic membrane bioreactor effluent using microalgae. Study and modeling of the process [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/59409 / Compendio
180

Vorbereitung einer Produktzertifizierung im Bereich biotechnologische Mikroalgenproduktion gemäß europäischen und internationalen Regelwerken zur qualitätsgerechten und sicheren Produktion: Praxisleitfaden für Unternehmen

Süße, Friedrich, Franke-Jordan, Sylvia 09 August 2021 (has links)
Mikroalgen bieten eine hohe Variation unterschiedlichster Wertstoffe. Hochwertige Lipide, wie Omega-3- Fettsäuren, oder Antioxidantien, wie Astaxanthin und Phycocyanin, werden schon heute in großen Mengen aus Mikroalgen gewonnen. Um diese und weitere Stoffe auf dem europäischen Markt anbieten zu können, sind unterschiedliche Normen und Regelungen zu beachten. Die Einhaltung von Normen und Regelungen wird mit Zertifizierungen bestätigt. Dieser Praxisleitfaden bietet einen ersten Einstieg für alle, die in das Feld der zertifizierten Mikroalgenproduktion eintreten wollen. Er gibt einen Überblick über geltende Regelungen verschiedener Ziel-Märkte und damit verbundene Maßnahmen der Qualitätssicherung. Weiterhin werden detaillierte Checklisten sowie Muster für Standardarbeitsanweisungen und Prozessbeschreibungen (via Prozess-Turtle) zur Verfügung gestellt.:Kurzinformationen Einführung Unternehmensorganisation und Qualitätsmanagement Absatzmärkte, Normen und Verordnungen für Herstellung und Vertrieb von Mikroalgen Ausgewählte Vorschriften für zertifizierte Mikroalgenproduktion Handlungsempfehlung für die Erfüllung von GMP-Anforderungen Typische Standardarbeitsanweisungen Planung von Audits Zusammenfassung

Page generated in 0.0687 seconds