Spelling suggestions: "subject:"microchannel.""
11 |
Single-Phase and Boiling Flow in Microchannels with High Heat FluxGalvis, Elmer 04 December 2012 (has links)
A cooling system for high heat flux applications is examined using microchannel evaporators with water as the working fluid and boiling as the heat transfer mechanism. Experimental studies are performed using single channel microevaporators allowing for better control of the flow mechanics unlike other investigations where multiple, parallel, flow channels can result in a non-uniform distribution of the working fluid. High-speed flow visualizations are performed in conjunction with heat transfer and pressure drop measurements to support the quantitative experimental data. Flow patterns associated with a range of boundary conditions are characterized and then presented in the form of novel flow regime maps that intrinsically reflect the physical mechanisms controlling two-phase pressure distributions and heat transfer behavior. Given the complexity associated with modeling of boiling heat transfer and the lack of a universal model that provides accurate predictions across a broad spectrum of flow conditions, flow regime maps serve as a valuable modeling aid to assist in targeted modeling over specific flow regimes. This work represents a novel and original contribution to the understanding of boiling mechanisms for water in microchannels.
The flow patterns in this work are found to be closely coupled with mass flux, heat flux, and channel size; where re-wetting and pressure oscillations play a crucial role, and are likely responsible for its development and evolution. Reversed flow, typically attributed to a non-uniform fluid distribution in multiple channel microevaporators by other researchers, is shown to be a result of the upstream expansion of confined bubbles. During flow boiling, the pressure drop in the microchannel increases with the heat flux for a constant flow rate due to the significant acceleration effects associated with smaller channels, unlike in single-phase flow where the pressure drop is constant. Water flow boiling in rectangular microchannels, although not extensively explored in the published literature, provides an extremely high cooling capacity, with dissipation rates approaching 440 W/cm², making this an ideal candidate for cooling of next generation electronic systems.
Single-phase flow studies revealed that pressure and heat transfer coefficient macroscale models are transferable to microchannels with hydraulic diameters down to 200 µm, when the entrance effects and minor losses are properly considered. These studies include laminar developing flow conditions not commonly considered in the literature and fully developed flow. Since the applicability of macroscale theories to microchannels is often questioned, this investigation helps clarify this issue for microchannels within the range of experimental conditions explored in this work. Finally, new correlations for the hydrodynamic entrance length are proposed for rectangular microchannels and good agreement is found when compared with published experimental data over a wide range of Reynolds number. These correlations are more accurate, and original in the sense that they incorporate the effects of channel aspect ratio, and include creeping flow conditions which are currently unavailable for rectangular microchannels.
This work represents a major advance in the development of new cooling systems for high heat flux applications requiring dissipation rates in excess of 100 W/cm².
|
12 |
Characterization of Microneedles and Microchannels for Enhanced Transdermal Drug DeliveryPuri, Ashana, Nguyen, Hiep X., Tijani, Akeemat O., Banga, Ajay K. 01 January 2021 (has links)
Microneedle (MN)-based technologies are currently one of the most innovative approaches that are being extensively investigated for transdermal delivery of low molecular weight drugs, biotherapeutic agents and vaccines. Extensive research reports, describing the fabrication and applications of different types of MNs, can be readily found in the literature. Effective characterization tools to evaluate the quality and performance of the MNs as well as for determination of the dimensional and kinetic properties of the microchannels created in the skin, are an essential and critical part of MN-based research. This review paper provides a comprehensive account of all such tools and techniques.
|
13 |
Microparticle Influenced Electroosmotic FlowYoung, John M. 31 May 2005 (has links) (PDF)
The influence of microparticles on electroosmotic flow was investigated experimentally and numerically. Experiments were conducted using four different particle types of varying chemical composition, surface charge and polarity. Each particle type was tested at five different volume fractions ranging from 0.001 – 0.025. With a constant applied electric field, positively charged particles enhanced the electroosmotic flow by as much as 850%. The enhancement depended on particle composition, size and concentration. For negatively charged particles, the bulk electroosmotic flow was retarded with the largest reductions being 35%. This occurred for the greatest negative paricle concentration studied. A final experimental study utilizing a single volume fraction and particle type was conducted using microtube inner diameters of 100 – 300 micrometers. It was found that the effective electroosmotic mobility decreases with increasing microtube diameter. A numerical study of microparticle influenced electroosmotic flow was also conducted for positively and negatively charged particles. A Galilean transformation was employed in which the particles were held stationary. A moving wall model was utilized to account for the particle velocity and the wall-induced electroosmotic flow. The particle-induced electroosmotic flow was also accounted for. A range of particle velocities were imposed in order to study the flow physics for a range of potential flows. Scenarios were run for a single tube diameter of 100 micrometers and a single particle diameter of 1.7 micrometers. Volume fractions of 0.001, 0.0075 and 0.025 were tested for both positively and negatively charged particles. At least two particle charges were studied for each volume fraction and polarity. Comparisons of the trends in the numerical model are qualitatively compared with the trends in the experimental data. The numerical and experimental data demonstrated similar trends. For positively charged particles, an increase in volume fraction showed a nonlinear increase in the average bulk flow velocity. For negatively charged particles an increase in volume fraction showed a nonlinear decrease in the average bulk flow velocity.
|
14 |
Flow boiling and two-phase flow instabilities in silicon microchannel heat sinks for microsystems coolingBogojević, Dario January 2010 (has links)
Flow boiling in microchannels, while very promising as a cooling technology in electronics thermal management, is still a subject being explored that requires further investigation. Before applying this technology for high heat flux computer chip cooling, challenging issues such as fully understanding boiling mechanisms in confined spaces, extending and stabilising the nucleate boiling regime, suppressing flow boiling instabilities, maintaining uniform flow distribution among microchannels, have to be addressed. If flow boiling is to be used as a thermal management method for high heat flux electronics it is necessary to understand the behaviour of a non-uniform heat distribution, which is typically the case observed in a real operating computer chip. In this study, flow boiling of deionised water in a silicon microchannel heat sink under uniform and non-uniform heating has been investigated with particular attention to flow boiling instabilities. An experimental system was designed and constructed to carry out the experimental investigations. The experimental heat sink consisting of forty parallel rectangular microchannels with 194 μm hydraulic diameter together with integrated inlet and outlet manifold was fabricated on a silicon wafer using inductive coupled plasma dry etching, in conjunction with photolithographic techniques. A design with integrated temperature sensors made from a thin nickel film allows local temperature measurements with a much faster response time and smaller thermal resistance as compared to temperature measurements using thermocouples. The integrated heater was designed to enable either uniform or non-uniform heating (hotspot investigation) with a low thermal resistance between the heater and the channels. Numerical simulations for single phase flow in adiabatic conditions were used to assist the design of the manifold geometry in the microchannels heat sink. Microfabricated temperature sensors were used together with simultaneous high speed imaging in order to obtain a better insight related to temperature fluctuations caused by two-phase flow instabilities under uniform and non-uniform heating. Two types of two-phase instabilities with flow reversal were identified and classified into flow stability maps. The effect of inlet water temperature on flow boiling instabilities was experimentally studied, with the influence of different subcooling conditions on the magnitude of temperatures as well as the influence on temperature uniformity over the heat sink being assessed. The effect of various hotspot locations on flow boiling instabilities has been investigated, with hotspots located in different positions along the heat sink. Bubble growth and departure size have been experimentally investigated. The results of this study demonstrate that bubble growth in microchannels is different from that in macroscale channels. Furthermore, the effects of bubble dynamics on flow instabilities and heat transfer coefficient have been investigated and discussed.
|
15 |
Hydrodynamics, heat transfer and flow boiling instabilities in microchannelsBarber, Jacqueline Claire January 2010 (has links)
Boiling in microchannels is a very efficient mode of heat transfer with high heat and mass transfer coefficients achieved. Less pumping power is required for two-phase flows than for single-phase liquid flows to achieve a given heat removal. Applications include electronics cooling such as cooling microchips in laptop computers, and process intensification with compact evaporators and heat exchangers. Evaporation of the liquid meniscus is the main contributor to the high heat fluxes achieved due to phase change at thin liquid films in a microchannel. The microscale hydrodynamic motion at the meniscus and the flow boiling heat transfer mechanisms in microchannels are not fully understood and are very different from those in macroscale flows. Flow instability phenomena are noted as the bubble diameter approaches the channel diameter. These instabilities need to be well understood and predicted due to their adverse effects on the heat transfer. A fundamental approach to the study of two-phase flow boiling in microchannels has been carried out. Simultaneous visualisation and hydrodynamic measurements were carried out investigating flow boiling instabilities in microchannels using two different working fluids (n-Pentane and FC-72). Rectangular, borosilicate microchannels of hydraulic diameter range 700-800 μm were used. The novel heating method, via electrical resistance through a transparent, metallic deposit on the microchannel walls, has enabled simultaneous heating and visualisation to be achieved. Images and video sequences have been recorded with both a high-speed camera and an IR camera. Bubble dynamics, bubble confinement and elongated bubble growth have been shown and correlated to the temporal pressure fluctuations. Both periodic and nonperiodic instabilities have been observed during flow boiling in the microchannel. Analysis of the IR images in conjunction with pressure drop readings, have allowed the correlation of the microchannel pressure drop to the wall temperature profile, during flow instabilities. Bubble size is an important parameter when understanding boiling characteristics and the dynamic bubble phenomena. In this thesis it has been demonstrated that the flow passage geometry and microchannel confinement effects have a significant impact on boiling, bubble generation and bubble growth during flow boiling in microchannels.
|
16 |
Fabrication of microchannels for use in micro-boiling experimentsCummins, Gerard Pio January 2011 (has links)
Increased power densities in VLSI chips have led to a need to develop cooling methods that can cope with the increased heat produced by such chips. Currently one of the more attractive methods to meet this goal is through the use of two phase flow of a fluid as changing phase of the material allows high heat transfer rates for a low temperature change. To bring this technology to commercialisation a greater understanding of the underlying physics involved at the microscale is required as there is much debate within literature as to what occurs during two phase flow heat transfer at these scales. The work conducted as part of this thesis is a step towards improving the understanding of the mechanisms involved with this process. This thesis describes the fabrication of a novel microchannel structure, which can be used to experimentally characterise two phase heat transfer as it occurs. The final process reported for these microchannels structures provides the basis of a technology for the fabrication of microchannels with increased sensor densities. Two types of microchannel devices have been fabricated for this project. The first device of these was an array of parallel microchannels formed by the reactive ion etching (RIE) of silicon, which was then bonded with Pyrex glass. These microchannels were simple in that sensors were not integrated for local measurement. However the production of these devices incorporated fabrication techniques such as anodic bonding and inductively coupled plasma RIE that were essential to the fabrication of more complex devices. The second device built was a single microchannel that contained an integrated heater and several temperature sensors. The use of wafer bonding enabled the device to take full advantage of both bulk and surface micromachining technology as the placement of the temperature sensors on the channel floor would not be possible with conventional bulk micromachining. The initial microchannel structures demonstrated that wafer bonding could be used to fabricate novel devices, but they highlighted the difficulty of achieving strong anodic bonds due to the presence of dielectric films throughout the fusion bonded wafer stack used in the channel fabrication. To improve the performance of the device the process was optimised through the use of insitu, non-destructive test structures. These structures enabled the uniformity and strength of the bonds to be optimised through visualisation over the whole wafer surface. The integrated sensors enabled temperature measurements to be taken along the channel with a sensitivity 3.60 ΩK-1 while the integrated heater has delivered a controllable and uniform heat flux of 264 kWm-2.
|
17 |
Estudo da ebulição convectiva de nanofluidos no interior de microcanais / Study of nanofluids convective boiling inside microchannelsCabral, Francismara Pires 29 May 2012 (has links)
Este trabalho trata do estudo teórico do ebulição convectiva de nanofluidos em canais de diâmetro reduzido (denominados de microcanais). Ele aborda, primeiramente, uma análise da literatura sobre a ebulição convectiva de fluidos convencionais em microcanais, na qual são discutidos critérios para a transição entre macro e microcanais e os padrões de escoamentos observados em canais de reduzido diâmetro. Métodos para a previsão das propriedades de transporte de nanofluidos foram levantados da literatura e estudos experimentais da convecção forçada, da ebulição nucleada e da ebulição convectiva de nanofluidos foram discutidos. Um método para a previsão do coeficiente de transferência de calor de nanofluidos em microcanais durante a ebulição convectiva foi proposto baseado em modelos convencionais da literatura ajustados para nanofluidos. O ajuste dos modelos convencionais foi realizado através de análise regressiva de dados experimentais para ebulição nucleada e convecção forçada de nanofluidos levantados da literatura, e da análise crítica de adimensionais que capturassem a influência das nanopartículas no processo de transferência de calor. De maneira geral o método proposto neste estudo apresenta concordância razoável com dados experimentais independentes, referente ao acréscimo do coeficiente de transferência de calor com o incremento da concentração volumétrica de nanopartículas. No entanto, a escassez de estudos experimentais sobre a ebulição convectiva de nanofluidos, especialmente em microcanais, impossibilitou uma análise mais aprofundada do método proposto. / The present work aims the theoretical study of convective boiling of nanofluids in small diameter channels (called microchannel). It discusses an analysis of the literature on convective boiling of conventional fluids in microchannels which presents criteria for the transition between conventional and microchannels and the flow patterns observed in small diameter channels. Methods for predicting the transport properties of nanofluids were compiled from the literature and experimental studies of forced convection, nucleate boiling and convective boiling of nanofluids were discussed. A method for predicting the heat transfer coefficient of nanofluids in microchannels during convective boiling was proposed based on conventional models from literature adjusted to nanofluids. The conventional models fitting was performed by regression analysis of experimental data for nucleate boiling and forced convection of nanofluids compiled from the literature and by critical analysis of dimensionless numbers which enable to capture the influence of nanoparticles on heat transfer process. In general the proposed method in this work presents reasonable agreement with independent experimental data regarding the increase in heat transfer coefficient with increasing nanoparticles volume fraction. However the scarcity of experimental studies on the convective boiling of nanofluids, especially in microchannels, precluded further analysis of the proposed method.
|
18 |
Onset of Flow Instability in Uniformly Heated, Narrow, Rectangular ChannelsBecht, Charles 09 May 2007 (has links)
The primary purpose of this investigation was to experimentally determine the effect of operational parameters on the onset of flow instability (OFI) in narrow, uniformly heated, vertical, rectangular channels. The geometry investigated was a 9.0 cm long rectangular channel with a 1.0mm by 1.3cm cross section. This geometry closely matches the coolant channel geometry in an accelerator target. Nitrogen-saturated subcooled water was used as the coolant, with mass fluxes ranging from 250 to 1336 kg/m^2 s, and an inlet temperature of 26ºC for the OFI experiments. The exit pressures investigated ranged from 275kPa to 620kPa, while the heat flux ranged from 0.729 to 2.236 MW/m^2. The primary data collected from these experiments were used to develop two correlations for the heat flux and mass flux at OFI.
Wall temperature data were also collected in order to develop a Nusselt number correlation for the single-phase regime. This correlation is valid for the Reynolds number range of 6x103 to 1.7x104. The data obtained in this investigation will aid designers of high-power-density systems establish design limits to prevent over heating and possible damage due to the onset of flow instability.
The data obtained in this investigation will aid designers of high-power-density systems establish design limits to prevent over heating and possible damage due to the onset of flow instability.
|
19 |
Effects of particle concentration and surfactant use in convective heat transfer of CuO nanofluids in microchannel flowByrne, Matthew Davidson 17 June 2011 (has links)
Heat exchange systems used in everything from cars to microelectronics have rapidly advanced in recent years to offer high heat transfer rates in increasingly smaller sizes. However, these systems have become essentially optimized using conventional heat transfer fluids. To test the viability of nanofluids as a new heat transfer fluid, an experimental investigation was designed using a constant pressure drop configuration to drive flow into a heated square microchannel test section. The experimental trials included seven different test fluids tested over varying concentrations and surfactant use. Two identical test sections were used to collect results on heat transfer rates, pressure drop, mass flowrate and pumping power for all fluids. These results show a heat transfer improvement for nanofluids of 8-16% over pure water, with no meaningful increase in pumping power. This result is highly desirable, as it indicates an easily obtainable heat transfer improvement without an associated pumping cost increase. Importantly, the experiment shows the potential viability of nanofluids for heat transfer applications, while acknowledging limitations such as long term nanofluid stability. / text
|
20 |
Phase Change Phenomena During Fluid Flow in MicrochannelsAli, Rashid January 2010 (has links)
Phase change phenomena of a fluid flowing in a micro channel may be exploited to make the heat exchangers more compact and energy efficient. Compact heat exchangers offer several advantages such as light weight, low cost, energy efficiency, capability of removing high heat fluxes and charge reduction are a few to mention. Phase change phenomena in macro or conventional channels have been investigated since long but in case of micro channels, fewer studies of phase change have been conducted and underlying phenomena during two-phase flow in micro channels are not yet fully understood. It is clear from the literature that the two-phase flow models developed for conventional channels do not perform well when extrapolated to micro scale. In the current thesis, the experimental flow boiling results for micro channels are reported. Experiments were conducted in circular, stainless steel and quartz tubes in both horizontal and vertical orientations. The internal diameters of steel tubes tested were 1.70 mm, 1.224 mm and the diameter of quartz tube tested was 0.781 mm. The quartz tube was coated with a thin, electrically conductive, transparent layer of Indium-Tin-Oxide (ITO) making simultaneous heating and visualization possible. Test tubes were heated electrically using DC power supply. Two refrigerants R134a and R245fa were used as working fluids during the tests. Experiments were conducted at a wide variety of operating conditions. Flow visualization results obtained with quartz tube clearly showed the presence of confinement effects and consequently an early transition to annular flow for micro channels. Several flow pattern images were captured during flow boiling of R134a in quartz tube. Flow patterns recorded during the experiments were presented in the form of Reynolds number versus vapour quality and superficial liquid velocity versus superficial gas velocity plots. Experimental flow pattern maps so obtained were also compared with the other flow pattern maps available in the literature showing a poor agreement. Flow boiling heat transfer results for quartz and steel tubes indicate that the heat transfer coefficient increases with heat flux and system pressure but is independent on mass flux and vapour quality. Experimental flow boiling heat transfer coefficient results were compared with those obtained using different correlations from the literature. Heat transfer experiments with steel tubes were continued up to dryout condition and it was observed that dryout conditions always started close to the exit of the tube. The dryout heat flux increased with mass flux and decreased with exit vapour quality. The dryout data were compared with some well known CHF correlations available in the literature. Two-phase frictional pressure drop for the quartz tube was also obtained under different operating conditions. As expected, two-phase frictional pressure drop increased with mass flux and exit vapour quality. / QC 20101206
|
Page generated in 0.0972 seconds