Spelling suggestions: "subject:"discharges""
1 |
Simulation studies of direct-current microdischarges for electric propulsionDeconinck, Thomas Dominique, 1982- 27 May 2010 (has links)
The structure of direct-current microdischarges is investigated using a detailed
two-dimensional multi-species continuum model. Microdischarges are directcurrent
discharges that operate at a relatively high pressure of about 100 Torr
and geometric dimensions in the 10-100 micrometer range. Our motivation for
the study of microdischarges comes from a potential application of these devices in
microthrusters for small satellite propulsion. The Micro Plasma Thruster (MPT)
concept consists of a direct-current microdischarge in a geometry comprising a constant
area flow section followed by a diverging exit nozzle. A detailed description
of the plasma dynamics inside the MPT including power deposition, ionization,
coupling of the plasma phenomena with high-speed flow, and propulsion system
performance is reported in this study. A two-dimensional model is developed as part of this study. The model
consists of a plasma module coupled to a flow module and is solved on a hybrid
unstructured mesh framework. The plasma module provides a self-consistent, multispecies,
multi-temperature description of the microdischarge phenomena while the
flow module provides a description of the low Reynolds number compressible flow
through the system. The plasma module solves conservation equations for plasma
species continuity and electron energy, and Poisson’s equation for the self-consistent
electric field. The flow module solves mass, bulk gas momentum and energy equations.
The coupling of energy from the electrostatic field to the plasma species is
modeled by the Joule heating term which appears in the electron and heavy species
energy equations. Discretization of the Joule heating term on unstructured meshes
requires special attention. We propose a new robust method for the numerical discretization
of the Joule heating term on such meshes using a cell-centered, finite
volume approach.
A prototypical microhollow cathode discharge (MHCD) is studied to guide
and validate the modeling effort for theMPT. Computational results for the impedance
characteristics as well as electrodynamic and chemical features of the discharge are
reported and compared to experimental results. At low current (< 0.1 mA), the
plasma activity is localized inside the cylindrical hollow region of the discharge
operating in the so-called “abnormal regime”. For larger currents, the discharge
expands over the outer flat surface of the cathode and operates in the “normal
regime”. Transient relaxation oscillations are predicted in the plasma properties for
intermediate discharge currents ranging from 0.1 mA to 0.3 mA; a phenomenon
that is reported in experiments.
The MPT, in its present configuration, is found to operate as an electrothermal,
rather than as an electrostatic thruster. A significant increase in specific impulse,
compared to the cold gas micronozzle, is obtained from the power deposition
into the expanding gas. For a discharge voltage of 750 V, a power input of 650
mW, and an argon mass flow rate of 5 sccm, the specific impulse of the device is increased by a factor of 1.5 to a value of 74 s. The microdischarge remains mostly
confined inside the micronozzle and operates in an abnormal regime. Gas heating,
primarily due to ion Joule heating, is found to have a strong influence on the overall
discharge behavior. The study provides crucial understanding to aid in the design
of direct-current microdischarge based thrusters. / text
|
2 |
Potentialités d’un plasma hors-équilibre localisé pour la réalisation d’antennes imprimées reconfigurables ou autolimitantes / Potential use of a non-equilibrium localized plasma for reconfigurable or limiter microstrip antennasPizarro Torres, Francisco 20 December 2013 (has links)
Le plasma est un gaz ionisé qui possède des caractéristiques physiques intéressantes dans le domaine des hyperfréquences. En simplifiant, on peut le caractériser comme un milieu diélectrique dispersif dont la permittivité est fonction de deux paramètres : la pulsation plasma (wp) et la fréquence de collision électron-neutre (Vp). En pratique, ces paramètres dépendent principalement de la densité électronique du gaz et de sa pression. Ainsi, en contrôlant les caractéristiques du plasma, on contrôle sa permittivité diélectrique, ce qui permet d’envisager son application dans le domaine de la reconfigurabilité en hyperfréquence.Parmi les topologies pouvant générer une décharge plasma, nous nous sommes focalisés sur l’utilisation de topologies récentes, à savoir les microdécharges plasma. Ces microdécharges sont intéressantes de par leur facilité d’intégration dans un dispositif RF : petite taille, stabilité, température proche de la température ambiante et perspectives d’utilisation à plus haute pression, voire à la pression atmosphérique.Devant la difficulté de modéliser précisément l’effet du plasma sur une onde guidée, une approche expérimentale a été privilégiée. Deux dispositifs de mesure ont ainsi été conçus pour caractériser cette interaction : une ligne de transmission microruban classique et une inversée intégrant une microdécharge en leurs centres. Grâce au protocole expérimental mis en œuvre, les paramètres S de la ligne de transmission sont obtenus et comparés à ceux des lignes sans plasma dans une large gamme paramétrique, qu’il s’agisse de la pression du gaz, de la fréquence ou encore du courant injecté à la décharge. Les résultats obtenus montrent deux phénomènes particulièrement intéressants: un déphasage de l’onde électromagnétique en présence de la décharge plasma et / ou une absorption importante de la puissance par la décharge.Deux dispositifs antennaires ont finalement été conçus en exploitant ces résultats. Le premier est une antenne imprimée accordable en fréquence dans une plage de l’ordre du pourcent, grâce à une décharge plasma contrôlée.Le plasma modifie alors la constante diélectrique entre les deux conducteurs constitutifs de l’antenne. Le second dispositif est une antenne anneau imprimée qui peut protéger son récepteur d’une attaque microondes de forte puissance. Ainsi, lorsqu’un champ incident dépasse un seuil prédéfini, réglable dans une certaine mesure par une tension continue externe, une décharge plasma apparaît au sein de l’élément rayonnant. Elle crée alors de la désadaptation et de l’absorption qui limitent de façon non linéaire la puissance restituée à l’accès. / Plasma is an ionized gas with physical characteristics that are of interest to the microwave domain. To simplify, we can characterize it as a dispersive medium whose dielectric permittivity depends on two parameters :the plasma pulsation wp and the electron-neutral collision frequency Vp. These two parameters depend mainly on the electron density of the gas and its pressure. If we can control the characteristics of the plasma, we can also control its dielectric permittivity, which allows us to consider the plasma for applications in the field of microwave reconfigurability.Among the structures that can generate a plasma discharge, we have focused on the use of recent topologies,known as plasma microdischarges. These microdischarges are of interest because of the possibility of easily integrating them into a RF device : small size, stability, temperature near room temperature and potential use at high pressures, including at atmospheric pressure.Given the difficulties in accurately modelling the effects of the plasma on a guided wave, an experimental approachwas preferred. Two measuring devices have been designed to characterize this interaction : a conventional microstrip transmission line and an inverted microstrip transmisison line, both including a microdischarge in their centers. With this experimental characterization, the S-parameters of the transmission line with the plasma are obtained and compared to those without plasma as a function of a wide range of parameters, such as gas pressure,frequency and current injected into the discharge.The results show two particularly interesting phenomena : a phase shift of the electromagnetic wave in presence of the plasma discharge and/or an important absorption of the incident power by the discharge. Two devices have been designed to exploit these results. The first is a frequency tunable microstrip patch antenna over a range of the order of one percent. In that case, the plasma changes the dielectric constant between the two conductors of the antenna. The second is a microstrip ring patch antenna that can protect the receiver from a high-power microwave (HPM) attack. When an incident electric field exceeds an adjustable preset threshold (tuned by an external DCvoltage source), a plasma discharge appears in the radiating element. The plasma then creates a mismatch and an absorption effect that limits, in a non-linear way, the received power at its input.
|
3 |
Etude de microdécharges comme source de rayonnement ultraviolet intense / Study of microdischarges as a source of intense ultraviolet radiationMartin, Virginie 08 December 2011 (has links)
La décontamination bactériologique des surfaces par lumière pulsée est un enjeu de société qui requiert le développement de nouveaux outils. Une technique ayant prouvée son efficacité est l’utilisation de lumière pulsée dans le domaine de longueur d’onde 200-280 nm (bande d’absorption de l’ADN). Dans ce travail, nous avons étudié deux sources, Décharge à Barrière Diélectrique (DBD) et réseaux de microdécharges permettant de générer un rayonnement à 222 nm correspondant à l’émission de l’exciplexe KrCl*. Nos études ont permis de démontrer qu’il était possible de produire des décharges dans de nombreuses microcavités fonctionnant en parallèle sans aucun ballast résistif à condition d’employer une excitation impulsionnelle nanoseconde. Des études d’imagerie et de spectroscopie résolues temporellement ont démontré que l’ensemble des microdécharges s’initiaient en moins de 5 ns, ce qui permet d’envisager la réalisation de matrice de microdécharges rayonnant des puissances crêtes élevées. Dans le cas des DBD, les études ont couplé modèle et expérience, ce qui nous a permis de déterminer les étapes clés de la cinétique réactionnelle et de prédire les meilleures conditions de production d’un rayonnement intense à 222 nm. Par ailleurs, grâce aux microdécharges, nous avons pu réaliser une source de rayonnement VUV permettant de sonder la densité de chlore atomique dans des réacteurs de gravure plasma par spectroscopie d'absorption résonnante. / Bacteriological decontamination of surfaces by pulsed light is a society issue that requires the development of new tools. A technique that proved its efficiency was to use a pulsed light in the 200-280 wavelength range corresponding to the DNA absorption band.In this work, we studied two different sources, the so-called Dielectric Barrier Discharge (DBD) and microdischarges arrays, to generate a radiation at 222 nm corresponding to the KrCl* exciplex emission. By using nanosecond pulsed discharges, we demonstrated that many microdischarges operating in parallel can be triggered simultaneously without introducing any resistive ballast. High speed ICCD imaging and time resolved spectroscopic studies had shown that all the microdischarges were initiated in less than 5 ns, which allowed the produce arrays of microdischarges generating high peak power of UV light. In the DBD case, studies have coupled experience and simulation which allowed us to determine the key steps of the kinetic pathways and to predict the best conditions for producing an intense 222 nm radiation. Moreover, microdischarges were also used to realize a VUV source to probe the atomic chlorine density in plasma etching reactors through resonance absorption spectroscopy.
|
4 |
Tratamento a plasma para melhoria na metalização de placas de circuito impresso / Plasma treatment for improved metallization of printed circuit boardsLaraia, André Bianchi 31 July 2018 (has links)
Submitted by André Bianchi Laraia (andreblaraia@yahoo.com.br) on 2018-08-29T22:49:26Z
No. of bitstreams: 1
Dissertacao-Andre-Bianchi-Laraia.pdf: 2142300 bytes, checksum: 9264414d38ac4ce5ec3be46acb98ca44 (MD5) / Rejected by Pamella Benevides Gonçalves null (pamella@feg.unesp.br), reason: Solicitamos que realize correções na submissão seguindo as orientações abaixo:
• Necessário fazer ajuste no sumario na lateral direita nas numerações.
• A palavra APÊNDICE A deve ser centralizada A palavra APÊNDICE A deve ser centralizada
• Referências. A palavra Referências deve ser centralizada, As referencias devem ser justificadas, espaço simples com um espaço simples(enter) entre elas.
• Sobre a elaboração das referencias e citações favor solicitar orientação para ajuste com a bibliotecária Pâmella - pamella.benevides@unesp.br
• A palavra APÊNDICE A deve ser centralizada
Mais informações acesse o link: http://www2.feg.unesp.br/Home/Biblioteca21/diretrizes-2016.pdf
Agradecemos a compreensão.
on 2018-08-30T12:07:55Z (GMT) / Submitted by André Bianchi Laraia (andreblaraia@yahoo.com.br) on 2018-09-12T01:58:28Z
No. of bitstreams: 1
Tese-Andre-Bianchi-Laraia-v20-converted.pdf: 2144718 bytes, checksum: eef37a1c04c8a387ddbff2e31f67db35 (MD5) / Approved for entry into archive by Pamella Benevides Gonçalves null (pamella@feg.unesp.br) on 2018-09-12T17:38:03Z (GMT) No. of bitstreams: 1
laraia_ab_me_guara.pdf: 2144718 bytes, checksum: eef37a1c04c8a387ddbff2e31f67db35 (MD5) / Made available in DSpace on 2018-09-12T17:38:03Z (GMT). No. of bitstreams: 1
laraia_ab_me_guara.pdf: 2144718 bytes, checksum: eef37a1c04c8a387ddbff2e31f67db35 (MD5)
Previous issue date: 2018-07-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Este trabalho apresenta o desenvolvimento de um processo de tratamento com plasma para melhorar ametalização química de placas de circuito impresso (PCI). A pluma de plasma é gerada em argônio a partir da descarga de barreira dielétrica (DBD) promovida entre uma agulha cirúrgica e um cilindro usando capilar de borosilicato como dielétrico. A tensão picoa-pico aplicada foi de 5 kV, com forma de onda senoidal na frequência de 37 kHz e potência de descarga em torno de 765 mW. O substrato é um composto de fibra de vidro e resina epóxi. Com incidência perpendicular da pluma de plasma na superfície, o diâmetro da área tratada circular é de 10 mm. Desta forma, o ângulo de contato reduz de 75 ° a 45 ° com 3 s de interação entre superfície da amostra e a ponta do plasma e o ângulo atinge o mínimo de 33 ° após 180 s de tempo de tratamento. A metalização química foi feita com banhos seqüenciais de solução de paládio e finalizada com banho de solução aquosa de cobre. Testes de adesão padrão mostraram uma forte adesão das camadas de metal nas superfícies previamente tratadas com as plumas de plasma. Esta adesão melhora com o tempo de tratamento. A melhoria na metalização foi observada em superfície plana e também em furos usados para conectar diferentes camadas em PCIs. A área metalizada na superfície dos buracos é maior nos orifícios tratados. Quanto maior o tempo de tratamento, maior é essa área. Todos os resultados indicaram que a técnica de tratamento por plasma de placas de fibra de vidro melhora a sua metalização química pelo cobre, levando a uma adesão mais uniforme e eficaz do metal à superfície com um método ambientalmente amigável / This work reports the development of a plasma treatment process to improve the chemical metallization of printed circuit boards (PCB). The plasma plume is generated in argon from a dielectric barrier discharge (DBD) promoted between a surgical needle and a cylinder using a borosilicate capillary as dielectric. The applied peak-to-peak voltage was 5 kV, with sinusoidal waveform at 37 kHz frequency and power in the discharge around 765 mW. The substrate was a composite of fiberglass and epoxy resin. With perpendicular incidence of the plasma plume on the surface the diameter of the circular treated area was 10 mm. In this area the contact angle reduces from 75° to 45° with 3 s of the plasma-surface interaction and the angle reaches the minimum of 33° after 180 s of treatment time. Chemical metallization was made with sequential baths of solution of palladium and finished with bath of aqueous solution of copper. Standard adhesion tests showed a strong adhesion of the metal layer on surfaces previously treated with the plasma plumes. This adhesion improves with the treatment time. The improvement in the metallization was observed on flat surface and also in holes used to connect different layers in PCB’s. The metallized area on the surface of the holes is larger in treated holes. The longer the treatment time the larger is this area. All these results indicated that the technique of plasma treatment of fiberglass boards improves its chemical metallization by copper leading to a more uniform and effective adhesion of the metal to the surface with an environmental friendly method
|
Page generated in 0.0753 seconds