• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 6
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Microfluidic Platform for the Control and Analysis of Phase Transitions in Concentrating Droplets

Vuong, Sharon M. 01 July 2014 (has links)
This work describes the development of a microfluidic platform that can be used to study suspension stability and crystallization with in droplets as a function of time and concentration. Techniques for monodisperse droplet formation, droplet trapping and storage, and droplet dehydration are developed and used to design a microfluidic platform that can be adapted for the applications of interest. A geometric model is developed to predict the droplet shape and emulsion structure generated by microfluidic nozzles. However, droplet volume and structure spacing cannot be independently controlled using microfluidic nozzles, and a design consisting of an array of traps is considered to achieve the desired structure for stable, extended droplet observation. The dehydration of aqueous droplets stored in the array is characterized as a function of relative humidity, and is shown to be reasonably estimated as a species diffusing from a sphere into an infinite medium. The microfluidic platform for droplet dehydration is combined with particle tracking to show that the stability of particle suspensions can be probed as a function of salt concentration. The flocculation behavior observed in the trapped droplets agrees well with corresponding macroscale measurements as well as with previously published studies. The platform is also used to generate substantial sample sizes to measure nucleation statistics and crystal growth rates of glycine as a function of initial concentration, environmental conditions, and the presence of additives. These applications show proof of concept that the microfluidic platform is a useful tool for the analysis of the behavior observed during particle aggregation and crystallization.
2

Micro-Pipette Thermal Sensor: A Unique Technique for Thermal Characterization of Microfluids, Microsphere, and Biological Cell

Shrestha, Ramesh 05 1900 (has links)
In this research work, an innovative method for measurement of thermal conductivity of a small volume of liquids, microsphere, and the single cancer cell is demonstrated using a micro-pipette thermal sensor (MPTS). The method is based on laser point heating thermometry (LPHT) and transient heat transfer. When a single pulse of a laser beam heats the sensor tip which is in contact with the surrounding liquids or microsphere/cells, the temperature change in the sensor is reliant on the thermal properties of the surrounding sample. We developed a model for numerical analysis of the temperature change using the finite element method (FEM) in COMSOL. Then we used MATLAB to fit the simulation result with experiment data by multi-parameter fitting technique to determine the thermal conductivity. To verify the accuracy in the measurement of the thermal conductivity by the MPTS method, a 10µl sample of de-ionized (DI) water, 50%, and 70% propylene glycol solution were measured with deviation less than 2% from reported data. Also, to demonstrate that the method can be employed to measure microparticles and a single spherical cell, we measured the thermal conductivity of poly-ethylene microspheres with a deviation of less than 1% from published data. We estimated the thermal conductivity of two types of cell culture growth media for the first time and determined the thermal conductivity of cancerous Jurkat Clone E6-1 to be 0.538 W/m.K ± 2%. Using the sensor of 1-2μm tip size, we demonstrated the MPTS technique as a highly accurate technique for determining the thermal conductivity of microfluidic samples, microparticles, biological fluids, and a non-invasive method for measuring the thermal conductivity of single cancer cell. This MPTS technique can be beneficial in developing a diagnosis method for the detection of cancer at an early stage. We also compared three effective thermal conductivity models for determining the weight percentage of Jurkat cell, considering water and protein as the major constituents. We discovered that a combination of Maxwell-Euken and effective medium theory model provides the closest approximation to published data and, therefore, recommend for the prediction of the cell composition.
3

The conceptual design of 3D miniaturised/integrated products as examined through the development of a novel red blood cell/plasma separation device

Topham, David January 2016 (has links)
The aim of this research is to examine the conceptual design issues concerned with integrating product capabilities that can only be generated at the micro- scale (through feature sizes generally of the order of 100nm to 100μm) directly into 3-dimensional products at the macro-scale. Such macro-scale products could accordingly contain internal devices that are too small to be seen or touched by unaided human designers, which begs the question as to how to enable designers to work with objects which are beyond direct human experience, and how can the necessary collective discussion take place within teams of designers, and between these teams and those responsible for product manufacture? This thesis examines and tests a concept that theoretical 2-dimensional diagrams of function may be transformed into 3-dimensional working structures using procedures allied to those used by graphic designers to create solid objects from 2-dimensional prototype geometries through, for example, extrusion or rotation. Applying such procedures to theoretical diagrams in order to transform them into scalable 3-dimensional devices is not yet in general use at the macro-scale, but with increasing recognition of the unique capabilities of the micro- scale the idea may grow in appeal to alleviate the difficulties of conceiving of functional structures that, when built, will be too small to experience directly. Furthermore this design method, through its basis upon a common currency of functional diagrams, may overcome many of the problems of describing and discussing the design and manufacture of normally intangible objects in 3 dimensions. Finally, it is shown through the example of a novel Red Blood Cell / Plasma Separation Device that the geometric transformation process can lead to the design of functional structures which would not readily be arrived at intuitively, and that may be effectively and efficiently integrated into host products.
4

Numerical Study of Fully Developed Laminar and Turbulent Flow Through Microchannels with Longitudinal Microstructures

Jeffs, Kevin B. 14 November 2007 (has links) (PDF)
Due to the increase of application in a number of emerging technologies, a growing amount of research has focused on the reduction of drag in microfluidic transport. A novel approach reported in the recent literature is to fabricate micro-ribs and cavities in the channel wall that are then treated with a hydrophobic coating. Such surfaces have been termed super- or ultrahydrophobic and the contact area between the flowing liquid and the solid wall is greatly reduced. Further, due to the scale of the micropatterned structures, the liquid is unable to wet the cavity and a liquid meniscus is formed between ribs. This creates a liquid-vapor interface at the cavity regions and renders surfaces with alternating regions of no-slip and of reduced shear on the microscale. This thesis reports the numerical study of hydrodynamically fully-developed laminar and turbulent flows through a parallel plate channel with walls exhibiting micro-ribs and cavities oriented parallel to the flow direction, where fully developed turbulent flow is considered in a time-averaged sense. Three laminar flow models are implemented to investigate the liquid-vapor interface and to account for the effects of the vapor motion in the cavity regions. For each of the laminar flow models, the liquid-vapor interface was idealized as a flat interface. As a benchmark for the proceeding laminar flow models, the first model considers the case of a vanishing shear stress at the interface between the liquid and vapor domains. Effects of the vapor motion in the cavity are then accounted for in a one-dimensional cavity model where the vapor velocity is considered to be dependent on the wall normal coordinate only, followed by a two-dimensional cavity model that accounts for the vapor velocity's dependence on the transverse coordinate as well. The vapor cavity is modeled analytically and is coupled to the liquid domain by equating the fluid velocities and shear stresses at the liquid-vapor interface. In the turbulent flow model the liquid-vapor interface is idealized as a flat interface with a zero shear stress boundary condition. In general the numerical predictions show a reduction in the total frictional resistance as the cavity width is increased relative to the channel width, the channel height-to-width aspect ratio is decreased, and the vapor cavity depth is increased. The frictional resistance is also reduced with increased Reynolds number in the turbulent flow case. In the range of parameters examined for each fluid flow regime, reductions in drag as high as 91% and 90% are reported for the laminar flow and turbulent flow models, respectively. Under similar conditions however, the turbulent flow results indicate a greater reduction in flow resistance than for the laminar flow scenario. Based on an analysis of the obtained data, analytical expressions are proposed for both laminar and turbulent flow which facilitates the prediction of the frictional resistance.
5

Mapping Of Pressure Losses Through Microchannels With Sweeping-bends Of Various Angle And Radii

Hansel, Chase 01 January 2008 (has links)
MEMS (Micro Electro Mechanical Systems) have received a great deal of attention in both the research and industrial sectors in recent decades. The broad MEMS category, microfluidics, the study of fluid flow through channels measured on the micrometer scale, plays an important role in devices such as compact heat exchangers, chemical and biological sensors, and lab-on-a-chip devices. Most of the research has been focused on how entire systems operate, both experimentally and through simulation. This paper strives, systematically, to map them through experimentation of the previous to untested realm of pressure loss through laminar square-profile sweeping-bend microchannels. Channels were fabricated in silicone and designed so a transducer could detect static pressure across a very specific length of channel with a desired bend. A wide variety of Reynolds numbers, bend radii, and bend angles were repeatedly tested over long periods in order to acquire a complete picture of pressure loss with in the domain of experimentation. Nearly all situations tested were adequately captured with the exception of some very low loss points that were too small to detect accurately. The bends were found to match laminar straight-duct theory at Reynolds numbers below 30. As Reynolds numbers increased, however, minor losses began to build and the total pressure loss across the bend rose above straight-duct predictions. A new loss coefficient equation was produced that properly predicted pressure losses for sweeping-bends at higher Reynolds numbers; while lower flow ranges are left to laminar flow loss for prediction.
6

Interfacial water dynamics / L'eau à des interfaces

Hauner, Ines Margret 07 June 2017 (has links)
Cette thèse porte sur l’étude de trois phénomènes interfaciaux reliés à l’eau : (i) la diffusion de protons dans un environnement complexe, (ii) la formation de gouttes et (iii) le déplacement d’huile sous l’effet du déplacement d’une phase aqueuse dans un circuit microfluidique poreux. Dans un premier temps, nous étudions une « quasi-interface », constituée de deux solutions complexes aqueuses de différents pH, telles qu’on les trouve dans les milieux cellulaires. La diffusion des protons ainsi que les dynamiques de réorientation des molécules d’eau sont examinés et nos résultats suggèrent que le transport des protons serait médié par des molécules tampons. La deuxième partie de cette thèse porte sur la rupture de gouttes à l’interface liquide/air. La rupture de gouttes de fluides non-visqueux est un phénomène extrêmement riche et sa description théorique constitue un des cas les plus simples des singularités à temps fini. Dans le chapitre 4 on met en évidence par l’imagerie ultrarapide que l’eau possède une tension de surface dynamique à l’échelle de la milliseconde. Dans le chapitre 5, on s’intéresse à la dynamique de rupture de métaux en évaluant si des mesures électriques permettent de se rapprocher temporellement (et spatialement) au plus près de la rupture (ns). Dans la dernière partie (chapitre 6), on revisite le problème classique du déplacement d’huile avec de l’eau, rencontré dans les techniques de récupération assistée du pétrole (RAP). On s’intéresse au rôle de la topologie de surface de la roche poreuse sur le piégeage de gouttes d’huile et dégage une loi d’échelle générale liant les effets de la rugosité au déplacement du fluide au sein du canal. / Water is the most abundant molecule on earth, indispensable for a plethora of chemical reactions and vital to the functioning of most living organisms. Interfacial water is particularly interesting to study as its physicochemical properties deviate significantly from the bulk whilst being of crucial importance to both fundamental research and industrial process design. In this thesis we study the interfacial water dynamics of three highly relevant phenomena by primarily recurring on microfluidics and ultrarapid imaging approaches. The first part focusses on proton diffusion in complex aqueous environments such as the the cytoplasm which remains a central issue in the biowater controversy. We evaluate and discuss the relevance of different proton diffusion mechanisms in cellular mimic solutions. The second part of this thesis is centred around droplet formation dynamics which are not only omnipresent in nature and technology, but also constitute a very rich phenomenon involving finite time singularities. We evaluate the outstanding pinch-off behaviour of water and aqueous solutions at the water/air interface that significantly deviates from other comparable non-viscous liquids on the millisecond time scale. In the last part we study a three phase system consisting of water and oil embedded in different ‘rough’ microstructures. Surface topology is identified as important determinant for the relative wettability behaviour of oil and water which constitutes a key finding for the development of efficient and environmentally compatible enhanced oil recovery strategies.

Page generated in 0.0468 seconds