561 |
Maximizing the Security and Oversight of Pathogenic Microorganisms and ToxinsPearson, Graham S. January 2003 (has links)
Yes
|
562 |
Preparing for the First Meeting of the States Parties / II: Security & Oversight of Pathogenic Microorganisms and ToxinsPearson, Graham S. January 2003 (has links)
Yes
|
563 |
Effects of cover crop management on biologically related soil properties in a Mississippi dryland soybean systemPokhrel, Sapana 07 August 2020 (has links)
Soil microorganisms are important for the stabilization and preservation of a good soil structure. Management practices can affect the diversity and population of microorganisms, which could beneficially change soil properties and promote a more sustainable dryland system. This study was established near Pontotoc, MS on Atwood silt loam to evaluate the impacts of cover crops and fertilizer sources on selected biologically related soil properties in a no-tillage, dryland soybean system. Soil analyses included total carbon and nitrogen, permanganate oxidizable carbon (POXC), easily extractable glomalin-related soil protein (EE-GRSP), water stable aggregate (WSA) and soil pH. Cover crop biomass and percent groundcover, soybean leaf area index (LAI), plant height, and yield were also determined. Results indicated that fertilizer source did have an impact on total nitrogen, EE-GRSP and soybean yield. A positive impact on soil properties is expected with the use of cover crops if studied for a longer period of time.
|
564 |
An Overview of Indoor Air QualityYontz, Raymond Reese 10 May 2003 (has links)
This thesis is designed to introduce beginning and experienced heating, ventilation and air conditioning (HVAC) engineers to common indoor air quality (IAQ) problems and solutions. The bulk of the work is a literature review of common pollutants, pollutant sources, HVAC equipment and systems, and remediation techniques. Pollutants covered include fungi, bacteria, dust mites, viruses, biofilms, microbiological volatile organic compounds (MVOC?s), volatile organic compounds (VOC?s), carbon dioxide, ozone, and radon. The HVAC systems covered are ventilation, direct expansion (DX), desiccant dehumidification, and system filters. The remediation techniques discussed are proper hygiene and maintenance, increased ventilation, humidity control, and proper selection of building materials.
|
565 |
Chemosynthetic microorganisms in leaching sulfide mineralsJameson, A. Keith 16 July 1957 (has links)
This investigation showed that a single bacterium was capable of sulfide oxidation in exposed ore bodies. This single bacterium was isolated and characterized. It exhibited different characteristics than any previously known organism. It was found to be a chemosynthetic autotroph. An optimum nutrient concentration was determined for pyrite oxidation. The nutrient concentration was determined for pyrite oxidation. The nutrient contains only a source of phosphate and nitrogen. Urea was found to be a better source of nitrogen than ammonium sulfate which had previously been used. The effect of various organic compounds on the oxidation of pyrite was observed. Glucose and sucrose showed no affect. Acetone slightly inhibited the oxidation. Benzene almost completely stopped the reaction. Kerosene showed no effect if the surface of the nutrient solution was not covered completely. It was found that a bacterium of the same type as that isolated in this investigation is responsible for sulfide oxidation at a location in Mexico. Thus, the oxidation of sulfides by bacteria is not a unique occurrence but is believed to occur wherever proper conditions are present.
|
566 |
IDENTIFICATION AND COMPARISION OF FUNGI FROM DIFFERENT DEPTHS OF ANCIENT GLACIAL ICEPatel, Angira N. 14 March 2006 (has links)
No description available.
|
567 |
THE EFFECTS OF TURNING ON MICROORGANISM COMMUNITIES AND NUTRIENT AVAILABILITY AT A CLASS III COMPOSTING FACILITYSEARS, MANDY 14 March 2002 (has links)
No description available.
|
568 |
Ozone, as an antimicrobial agent in minimally processed foodsKim, Jin-Gab January 1998 (has links)
No description available.
|
569 |
Individual-based modeling of microbial systems under consideration of consumer-resource interactions and evolutionBogdanowski, André 22 July 2022 (has links)
Ecological systems are difficult to understand, let alone predict. The reason is their enormous complexity that arises from numerous organisms interacting with each other and their environment in a multitude of ways. However, this understanding is crucial to secure a plentitude of services that are provided by ecological systems. A substantial proportion of these services are carried out by microorganisms such as bacteria, fungi, and archaea. For example, microorganisms contribute to degradation of organic matter, water purification, and even regulation of the global climate. Therefore, a thorough understanding of the ecology of microorganisms is particularly relevant for our future well-being.
While microorganisms are comparatively well-suited for experimental studies, owing also to recent technological advances in molecular biology, it is necessary to apply theory and modeling in order to fully benefit from the empirical data. A widely used theoretical method in microbial ecology is individual-based modeling, in which population or community dynamics emerge from the behavior and interplay of individual entities that are simulated according to a predefined set of rules. However, existing individual-based models of microbial communities are often specialized on particular research questions or require proficiency in specific programming languages or software. These limitations can be hampering for a broad and systematic application of individual-based modeling in microbial ecology.
For this thesis, McComedy, a framework and software tool for the creation and running of individual-based models of microbial consumer-resource systems, was developed. It allows for fast and user-friendly model development by flexibly combining pre-implemented building blocks that represent physical, biological, and evolutionary processes. The ability of McComedy to capture the essential dynamics of microbial consumer-resource systems was demonstrated by reproducing and furthermore adding to the results of two distinct studies from the literature.
McComedy was furthermore applied to study the evolution of metabolic interactions between bacteria. More specifically, it was assessed whether cooperative exchange of costly metabolites can evolve in bacterial multicellular aggregates. The results indicate that this is in principle possible, however, it depends on the mechanism by which the metabolites are exchanged. If metabolites are exchanged via diffusion through extracellular space, cooperation is not expected to evolve. On the other hand, if metabolites are transferred by contact-dependent means, for instance via intercellular nanotubes, cooperation is likely to evolve.
Overall, contributions from this thesis comprise, first, a user-friendly modeling tool that can be used by microbial ecologists, second, insights into the evolution of metabolic interactions in bacterial systems, and, third, awareness of how the mechanistic consideration of a process can drastically affect the outcome of a modeling study.
|
570 |
Investigating the Influence of Fresh and Aged Garlic Extracts on the Biosynthesis of Trimethylamine N-OxideHughes, Michael Douglas Jr. 07 January 2021 (has links)
Introduction: Garlic-derived organosulfur compounds are associated with physiological benefits, including the reduction of cardiovascular disease (CVD) risk, possibly by reducing the risk marker trimethylamine-N-oxide (TMAO). TMAO production in humans is largely influenced by the metabolic activity of the intestinal bacteria on dietary precursors including L-carnitine. Dietary supplementation of bioactive garlic phytochemical allicin has recently been suggested to reduce the formation of TMAO precursor molecule trimethylamine (TMA) from L-carnitine through impact on the intestinal bacteria, thereby limiting the formation of TMAO by the host.
Purpose: The objective of this research was to evaluate and compare the efficacy of fresh and aged garlic extracts (rich in alliin and allicin, respectively) in the reduction of circulating TMAO levels produced from L-carnitine metabolism and identify shifts in the abundances of gastrointestinal bacterial genes that may contribute to reduction in circulating TMA levels, which may, in turn, influence the levels of circulating TMAO.
Methods: Five-week old female C57BL/6 mice (n = 12) were challenged with L-carnitine to assess the animal's capacity for TMAO production. Animals were gavaged daily with fresh or aged garlic extract dissolved in L-carnitine for 13 days, then challenged with L-carnitine post-treatment to evaluate changes in TMAO production. Whole blood samples were evaluated for TMAO content using UPLC-MS/MS and compared to non-extract consuming control groups. Post-mortem hepatic tissues were collected and analyzed for TMA-oxidizing flavin monooxygenase 3 (Fmo3) gene abundance and protein expression using quantitative real-time PCR (qPCR) and ELISA. Fecal samples collected prior to and following treatment were analyzed using qPCR to quantify shifts in the abundance of L-carnitine metabolizing genes cntAB and grdH.
Results: Postprandial and circulating TMAO levels were not significantly affected (p < 0.05) by inclusion of garlic extract in the diet. Dietary intervention with extracts significantly increased L-carnitine-derived proatherogenic CVD risk marker γ-butyrobetaine levels ~28% higher than the increased levels observed in the positive control group supplemented with L-carnitine only. Mice administered garlic extracts had significant increases of, γ-butyrobetaine, relative to negative control mice and mice supplemented with broad-spectrum antibiotics. Mice supplemented fresh garlic extract saw a 25-fold increase in circulating γ-butyrobetaine levels after intervention; mice supplemented aged garlic extract saw a 23-fold increase in circulating γ-butyrobetaine levels after intervention. Furthermore, FMO3 protein expression levels in either extract treatment group were not significantly different (p < 0.05) from controls. Abundances of L-carnitine metabolizing genes in fecal samples of mice fed either garlic extract were not significantly higher than levels observed in positive or negative controls. Interestingly, treatment with broad-spectrum antibiotics significantly increased abundances of L-carnitine metabolizing genes cntAB and grdH when compared with controls. Abundances of hepatic Fmo3 mRNA transcript in mice supplemented garlic extracts were not significantly different from the positive control group when data were normalized to mg of liver used. Mice supplemented aged garlic extracts significantly lowered Fmo3 mRNA transcript levels relative to the negative control.
Significance: This research suggests that garlic extract supplementation in conjunction with excess L-carnitine consumption may not be an appropriate dietary intervention strategy to reduce CVD risk. As it stands, garlic extract supplementation may increase CVD risk by promoting the biosynthesis of proatherogenic γ-butyrobetaine. The impact of garlic extract mediated increases in γ-butyrobetaine should be further investigated in tandem with CVD outcomes to confirm the findings presented in this study. / Doctor of Philosophy / Garlic compounds that contain sulfur are associated with many health benefits, including the reduction of heart disease risk, possibly by lowering the amount of risk marker trimethylamine-N-oxide (TMAO) in the body. TMAO is produced when the gut bacteria break down L-carnitine into trimethylamine (TMA), which is then absorbed and converted to TMAO in the liver. Garlic supplementation has recently been suggested to reduce TMAO formation, which may, in turn, reduce heart disease risk. The objective of this research was to evaluate the potential of fresh and aged garlic extracts (which have different sulfur compounds in them) to reduce TMAO levels and identify changes in the gut bacteria that may contribute to this lowering effect. Mice were fed daily with either fresh or aged garlic extract for 13 days, then given L-carnitine to evaluate changes in TMAO levels in the blood. These levels were then compared to mice that did not consume any garlic extract. Liver samples were tested for their ability to turn TMA into TMAO. Fecal samples were tested to determine if there were any changes to gut bacteria caused by the garlic extracts. TMAO levels in the mice were not significantly affected by consuming garlic extracts. Consuming garlic extracts did, however, increase another risk marker of heart disease known as γ-butyrobetaine. Feeding mice garlic extracts did not affect the ability of mice to turn TMA into TMAO, nor did it affect the gut bacteria. This research suggests that garlic extracts may not be an appropriate strategy to reduce heart disease risk. As it stands, garlic extract supplementation may increase heart disease risk by promoting the γ-butyrobetaine formation. The means that garlic extracts increase γ-butyrobetaine levels should be further investigated.
|
Page generated in 0.0675 seconds