Spelling suggestions: "subject:"micropolitical theory"" "subject:"micropolitics theory""
1 |
3D Finite Element Cosserat Continuum Simulation of Layered GeomaterialsRiahi Dehkordi, Azadeh 26 February 2009 (has links)
The goal of this research is to develop a robust, continuum-based approach for a three-dimensional, Finite Element Method (FEM) simulation of layered geomaterials. There are two main approaches to the numerical modeling of layered geomaterials; discrete or discontinuous techniques and an equivalent continuum concept.
In the discontinuous methodology, joints are explicitly simulated. Naturally, discrete techniques provide a more accurate description of discontinuous materials. However, they are complex and necessitate care in modeling of the interface. Also, in many applications, the definition of the input model becomes impractical as the number of joints becomes large. In order to overcome the difficulties associated with discrete techniques, a continuum-based approach has become popular in some application areas. When using a continuum model, a discrete material is replaced by a homogenized continuous material, also known as an 'equivalent continuum'. This leads to a discretization that is independent of both the orientation and spacing of layer boundaries. However, if the layer thickness (i.e., internal length scale of the problem) is large, the classical continuum approach which neglects the effect of internal characteristic length can introduce large errors into the solution.
In this research, a full 3D FEM formulation for the elasto-plastic modeling of layered geomaterials is proposed within the framework of Cosserat theory. The effect of the bending stiffness of the layers is incorporated in the matrix of elastic properties. Also, a multi-surface plasticity model, which allows for plastic deformation of both the interfaces between the layers and intact material, is introduced. The model is verified against analytical solutions, discrete numerical models, and experimental data. It is shown that the FEM Cosserat formulation can achieve the same level of accuracy as discontinuous models in predicting the displacements of a layered material with a periodic microstructure. Furthermore, the method is capable of reproducing the strength behaviour of materials with one or more sets of joints. Finally, due to the incorporation of layer thickness into the constitutive model, the FEM Cosserat formulation is capable of capturing complicated failure mechanisms such as the buckling of individual layers of material which occur in stratified media.
|
2 |
3D Finite Element Cosserat Continuum Simulation of Layered GeomaterialsRiahi Dehkordi, Azadeh 26 February 2009 (has links)
The goal of this research is to develop a robust, continuum-based approach for a three-dimensional, Finite Element Method (FEM) simulation of layered geomaterials. There are two main approaches to the numerical modeling of layered geomaterials; discrete or discontinuous techniques and an equivalent continuum concept.
In the discontinuous methodology, joints are explicitly simulated. Naturally, discrete techniques provide a more accurate description of discontinuous materials. However, they are complex and necessitate care in modeling of the interface. Also, in many applications, the definition of the input model becomes impractical as the number of joints becomes large. In order to overcome the difficulties associated with discrete techniques, a continuum-based approach has become popular in some application areas. When using a continuum model, a discrete material is replaced by a homogenized continuous material, also known as an 'equivalent continuum'. This leads to a discretization that is independent of both the orientation and spacing of layer boundaries. However, if the layer thickness (i.e., internal length scale of the problem) is large, the classical continuum approach which neglects the effect of internal characteristic length can introduce large errors into the solution.
In this research, a full 3D FEM formulation for the elasto-plastic modeling of layered geomaterials is proposed within the framework of Cosserat theory. The effect of the bending stiffness of the layers is incorporated in the matrix of elastic properties. Also, a multi-surface plasticity model, which allows for plastic deformation of both the interfaces between the layers and intact material, is introduced. The model is verified against analytical solutions, discrete numerical models, and experimental data. It is shown that the FEM Cosserat formulation can achieve the same level of accuracy as discontinuous models in predicting the displacements of a layered material with a periodic microstructure. Furthermore, the method is capable of reproducing the strength behaviour of materials with one or more sets of joints. Finally, due to the incorporation of layer thickness into the constitutive model, the FEM Cosserat formulation is capable of capturing complicated failure mechanisms such as the buckling of individual layers of material which occur in stratified media.
|
3 |
Etude numérique de la localisation des déformations en géotechnique dans le cadre de la théorie micropolaire / Numerical investigations of the strain localization in geotechnical engineering within the framework of micropolar theoryLiu, Jiangxin 22 March 2018 (has links)
La plupart des ruptures des structures géotechniques sont associées aux phénomènes de localisation des déformations, qui s'accompagnent toujours d'un adoucissement de la résistance. De nombreuses observations expérimentales montrent que d’importants réarrangements et rotations de particules se produisent à l'intérieur des bandes de cisaillement. Cette thèse vise à étudier numériquement les phénomènes de localisation des déformations dans les matériaux granulaires. Considérant les problèmes de dépendance au maillage dans l'analyse par éléments finis dans le cadre de la modélisation continue classique, un modèle de sable basé sur l' état critique a été formulé dans le cadre de la théorie micropolaire. Un code d'éléments finis pour les problèmes bidimensionnels a été développé dans ce cadre. Ensuite, les simulations d'essais bi-axiaux ont permis d’étudier en profondeur les caractéristiques des bandes de cisaillement en termes d'apparition,d'épaisseur, d'orientation, etc. Dans le même temps, l'efficacité de l'approche micropolaire, en tant que technique de régularisation, a été discutée. L'analyse de l'instabilité dans un continuum micropolaire basé sur le travail du second-ordre a également été effectuée. Enfin,pour une application plus large dans la simulation des défaillances en ingénierie géotechnique, le modèle 2D a été étendu à un modèle 3D. Sur la base de l'étude, les modèles 2D et 3D ont démontré leurs capacités de régularisation pour éviter les problèmes de dépendance au maillage et reproduire raisonnablement les bandes de cisaillement dans les géostructures. / Most of the progressive failures of geotechnical structures are associated with the strain localization phenomenon, which is generally accompanied by strength softening. Many experimental observationsshow that significant rear rangements and rotations of particles occur inside the shear bands. The aim of this thesis is to investigate numerically the strain localization phenomena of granular materials. Considering the mesh dependency problems in finite element analysis caused by strains oftening within the classical continuum framework, a sand model based on critical-state has been formulated within the framework of the micropolar theory, taking into account the micro rotations, and implemented into a finite element code for two dimensional problems. Then, the simulations of the shearband in biaxial tests are comprehensively studied in terms of onset, thickness, orientation, etc. At the same time, the efficiency of the micropolar approach, as a regularization technique, is discussed. This is followed by an instability analysis using the second-order work based on the micropolar continuum theory. Finally, for a wider application in simulating failures in geotechnical engineering, the 2D model has been extended to 3D model. Based on the entire study, both the 2D and 3Dmodel demonstrate obvious regularization ability to relieve the mesh dependency problems and to reproduce reasonably the shear bands in geostructures.
|
4 |
A theory for the homogenisation towards micromorphic media and its application to size effects and damageHütter, Geralf 19 February 2019 (has links)
The classical Cauchy-Boltzmann theory of continuum mechanics requires that the dimension, over which macroscopic gradients occur, are much larger than characteristic length scales of the microstructure. For this reason, the classical continuum theory comes to its limits for very small specimens or if material degradation leads to a localisation of deformations into bands, whose width is determined by the microstructure itself. Deviations from the predictions of the classical theory of continuum mechanics are referred to as size effects.
It is well-known, that generalised continuum theories can describe size effects in principle. Especially micromorphic theories gain increasing popularity due its favorable numerical implementation. However, the formulation of the additionally necessary constitutive equations is a problem. For linear-elastic behavior, the number of material parameters increases considerably compared to the classical theory. The experimental determination of these parameters is thus very difficult. For nonlinear and history-dependent processes, even the qualitative structure of the constitutive equations can hardly be assessed solely on base of phenomenological considerations. Homogenisation methods are a promising approach to solve this problem.
The present thesis starts with a critical review on the classical theory of homogenisation and the approaches on micromorphic homogenisation which are available in literature. On this basis, a theory is developed for the homogenisation of a classical Cauchy-Boltzmann continuum at the microscale towards a micromorphic continuum at the macroscale. In particular, the micro-macro-relations are specified for all macroscopic kinetic and kinematic field quantities. On the microscale, the corresponding boundary-value problem is formulated, whereby kinematic, static or periodic boundary conditions can be used. No restrictions are imposed on the material behavior, i. e. it can be linear or nonlinear. The special cases of the micropolar theory (Cosserat theory), microstrain theory and microdilatational theorie are considered.
The proposed homogenisation method is demonstrated for several examples. The simplest example is the uniaxial case, for which the exact solution can be specified. Furthermore, the micromorphic elastic properties of a porous, foam-like material are estimated in closed form by means of Ritz' method with a cubic ansatz.
A comparison with partly available exact solutions and FEM solutions indicates a qualitative and quantitative agreement of sufficient accuracy. For the special cases of micropolar and microdilatational theory, the material parameters are specified in the established nomenclature from literature. By means of these material parameters the size effect of an elastic foam structure is investigated and compared with corresponding results from literature.
Furthermore, micromorphic damage models for quasi-brittle and ductile failure are presented. Quasi-brittle damage is modelled by propagation of microcracks. For the ductile mechanism, Gurson's limit-load approach on the microscale is extended by microdilatational terms. A finite-element implementation shows, that the damage model exhibits h-convergence even in the softening regime and that it thus can describe localisation.:1 Introduction
2 Literature review: Micromorphic theory and strain-gradient theory
2.1 Variational approach
2.1.1 Cauchy-Boltzmann continuum
2.1.2 Second gradient theory / Strain gradient theory
2.1.3 Micromorphic theory
2.1.4 Method of virtual power
2.2 Homogenisation approaches
2.2.1 Classical theory of homogenisation
2.2.2 Strain-gradient theory by Gologanu, Kouznetsova et al.
2.2.3 Micromorphic theory by Eringen
2.2.4 Average field theory by Forest et al.
2.3 Scope of the present thesis
3 Homogenisation towards a micromorphic continuum
3.1 Thermodynamic considerations and generalized Hill-Mandel lemma
3.2 Surface operator and kinetic micro-macro relations
3.3 Kinematic micro-macro relations
3.4 Porous material
3.5 Kinematic and periodic boundary conditions
3.6 Special cases
3.6.1 Strain-gradient theory / Second gradient theory
3.6.2 Micropolar theory
3.6.3 Microstrain theory
3.6.4 Microdilatational theory
4 Elastic Behaviour
4.1 Uniaxial case
4.2 Upper bound estimates by Ritz' Method
4.3 Isotropic porous material
4.4 Micropolar theory
4.5 Microdilatational theory
4.6 Size effect in simple shear
5 Damage Models
5.1 Quasi-brittle damage
5.2 Microdilatational extension of Gurson’s model of ductile damage
5.2.1 Limit load analysis for rigid ideal-plastic material
5.2.2 Phenomenological extensions
5.2.3 FEM implementation
5.2.4 Example
6 Discussion / Die klassische Cauchy-Boltzmann-Kontinuumstheorie setzt voraus, dass die Abmessungen, über denen makroskopische Gradienten auftreten, sehr viele größer sind als charakteristische Längenskalen der Mikrostruktur. Aus diesem Grund stößt die klassische Kontinuumstheorie bei sehr kleinen Proben ebenso an ihre Grenzen wie bei Schädigungsvorgängen, bei denen die Deformationen in Bändern lokalisieren, deren Breite selbst von der Längenskalen der Mikrostruktur bestimmt wird. Abweichungen von Vorhersagen der klassischen Kontinuumstheorie werden als Größeneffekte bezeichnet.
Es ist bekannt, dass generalisierte Kontinuumstheorien Größeneffekte prinzipiell beschreiben können. Insbesondere mikromorphe Theorien erfreuen sich auf Grund ihrer vergleichsweise einfachen numerischen Implementierung wachsender Beliebtheit. Ein großes Problem stellt dabei die Formulierung der zusätzlich notwendigen konstitutiven Gleichungen dar. Für linear-elastisches Verhalten steigt die Zahl der Materialparameter im Vergleich zur klassischen Theorie stark an, was deren experimentelle Bestimmung sehr schwierig macht. Bei nichtlinearen und lastgeschichtsabhängigen Prozessen lässt sich selbst die qualitative Struktur der konstitutiven Gleichungen ausschließlich auf Basis phänomenologischer Überlegungen kaum erschließen. Homogenisierungsverfahren stellen einen vielversprechenden Ansatz dar, um dieses Problem zu lösen.
Die vorliegende Arbeit gibt zunächst einen kritischen Überblick über die klassische Theorie der Homogenisierung sowie die im Schrifttum verfügbaren Ansätze zur mikromorphen Homogenisierung. Auf dieser Basis wird eine Theorie zur Homogenisierung eines klassischen Cauchy-Boltzmann-Kontinuums auf Mikroebene zu einem mikromorphen Kontinuum auf der Makroebene entwickelt. Insbesondere werden Mikro-Makro-Relationen für alle makroskopischen kinetischen und kinematischen Feldgrößen angegebenen. Auf der Mikroebene wird das entsprechende Randwertproblem formuliert, wobei kinematische, statische oder periodische Randbedingungen verwendet werden können. Das Materialverhalten unterliegt keinen Einschränkungen, d. h., dass es sowohl linear als auch nichtlinear sein kann. Die Sonderfälle der mikropolaren Theorie (Cosserat-Theorie), Mikrodehnungstheorie und mikrodilatationalen Theorie werden erarbeitet.
Das vorgeschlagene Homogenisierungsverfahren wird für eine Reihe von Beispielen demonstriert. Als einfachstes Beispiel dient der einachsige Fall, für den die exakte Lösung angegebenen werden kann. Weiterhin werden die mikromorphen, elastischen Eigenschaften eines porösen, schaumartigen Materials mittels des Ritz-Verfahrens mit einem kubischen Ansatz in geschlossener Form abgeschätzt. Ein Vergleich mit teilweise verfügbaren exakten Lösungen sowie FEM-Lösungen weist eine qualitative und quantitative Übereinstimmung hinreichender Genauigkeit aus. Für die Sonderfälle mikropolaren und mikrodilatationalen Theorien werden die Materialparameter in der im Schrifttum üblichen Nomenklatur angegebenen. Mittels dieser Materialparameter wird der Größeneffekt in einer elastischen Schaumstruktur untersucht und mit entsprechenden Ergebnissen aus dem Schrifttum verglichen.
Desweiteren werden mikromorphe Schädigungsmodelle für quasi-sprödes und duktiles Versagen vorgestellt. Quasi-spröde Schädigung wird durch das Wachstum von Mikrorissen modelliert. Für den duktilen Mechanismus wird der Ansatz von Gurson einer Grenzlastanalyse auf Mikroebene um mikrodilatationale Terme erweitert. Eine Finite-Elemente-Implementierung zeigt, dass das Schädigungsmodell auch im Entfestigungsbereich h-Konvergenz aufweist und die Lokalisierung beschreiben kann.:1 Introduction
2 Literature review: Micromorphic theory and strain-gradient theory
2.1 Variational approach
2.1.1 Cauchy-Boltzmann continuum
2.1.2 Second gradient theory / Strain gradient theory
2.1.3 Micromorphic theory
2.1.4 Method of virtual power
2.2 Homogenisation approaches
2.2.1 Classical theory of homogenisation
2.2.2 Strain-gradient theory by Gologanu, Kouznetsova et al.
2.2.3 Micromorphic theory by Eringen
2.2.4 Average field theory by Forest et al.
2.3 Scope of the present thesis
3 Homogenisation towards a micromorphic continuum
3.1 Thermodynamic considerations and generalized Hill-Mandel lemma
3.2 Surface operator and kinetic micro-macro relations
3.3 Kinematic micro-macro relations
3.4 Porous material
3.5 Kinematic and periodic boundary conditions
3.6 Special cases
3.6.1 Strain-gradient theory / Second gradient theory
3.6.2 Micropolar theory
3.6.3 Microstrain theory
3.6.4 Microdilatational theory
4 Elastic Behaviour
4.1 Uniaxial case
4.2 Upper bound estimates by Ritz' Method
4.3 Isotropic porous material
4.4 Micropolar theory
4.5 Microdilatational theory
4.6 Size effect in simple shear
5 Damage Models
5.1 Quasi-brittle damage
5.2 Microdilatational extension of Gurson’s model of ductile damage
5.2.1 Limit load analysis for rigid ideal-plastic material
5.2.2 Phenomenological extensions
5.2.3 FEM implementation
5.2.4 Example
6 Discussion
|
Page generated in 0.0708 seconds