• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 267
  • 99
  • 97
  • 80
  • 23
  • 15
  • 15
  • 11
  • 6
  • 5
  • 4
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 710
  • 258
  • 216
  • 151
  • 137
  • 113
  • 92
  • 71
  • 69
  • 60
  • 56
  • 54
  • 53
  • 50
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Ultra High Vacuum Low Temperature Scanning Tunneling Microscope for Single Atom Manipulation on Molecular Beam Epitaxy Grown Samples

Clark, Kendal 07 October 2005 (has links)
No description available.
272

STM Study of Molecular and Biomolecular Electronic Systems

Clark, Kendal W. 22 September 2010 (has links)
No description available.
273

STM Investigation of Charge-Transfer and Spintronic Molecular Systems

Perera, Uduwanage Gayani E. 25 April 2011 (has links)
No description available.
274

Langmuir Trough and Brewster Angle Microscopy Study of Model Lung Surfactant Monolayers at the Air/Aqueous Interface

Telesford, Dana-Marie Leslie-Ann 18 December 2012 (has links)
No description available.
275

Random Telegraph Signal Noise in CMOS Image Sensor (CIS) and Use of a CIS in a Low-Cost Digital Microscope

Majumder, Sumit 10 1900 (has links)
<p>The introduction of the digital image sensor has triggered a revolution in the field of imaging. It has not only just replaced the conventional silver halide film based imaging system, but has also enormously widened the scope of imaging applications. Previously, charge-coupled devices (CCDs) were the most popular technology for image sensors. But in the past decade, they have been rapidly replaced by the CMOS image sensor (CIS) technology. The CCD image sensors offers higher sensitivity, wider dynamic range and better resolution compared to its CMOS imager counterparts. However, the lower power performance, higher speed of operation, easier integration with signal control and processing circuitries, and the use well-established mainstream fabrication process of CMOS technology, are key advantages that have served to propel CMOS imagers beyond CCDs in the market.</p> <p>However, CIS suffers from higher temporal noise compared to that of CCDs. One of the major noise sources in CIS is the 1/ noise generated from the in-pixel active amplifier. Due to continuous shrinking of MOS devices, the random telegraph signal (RTS) noise is emerging as a dominant noise source over other low frequency noise in CMOS imagers, resulting into reduced imaging performance.</p> <p>The RTS noise which evolves from trapping and de-trapping of electrons by the defects in the oxide, causes fluctuation in the drain current of the MOSFET. In this work, we have carried out time-domain measurement of RTS noise in CIS pixels. The time domain RTS measurements provide useful information about its characteristics in different operating conditions, which can be further used to extract the trap parameters and determine the optimum settings of operation of CIS.</p> <p>The capability of integrating various on-chip operations, higher speed and lower fabrication cost has made the CIS a good choice for various imaging applications. In order to demonstrate the extent of possible applications of CIS, we have developed an imaging system using a CIS. Two major concerns of biomedical imaging systems are their speed and cost. The system presented here is implemented using a CIS and FPGA (field programmable gate array) that provides a low-cost and high frame rate solution for biomedical microscopy.</p> / Master of Applied Science (MASc)
276

Dust Flow Separator Type Electrostatic Precipitator For A Control Of Particulate Matter Emissions From Natural Gas Combustion

Guan, Lili 01 1900 (has links)
<p>Pollution problems have drawn worldwide awareness and become significantly important now. Particulate matter (PM) emission is one of the key pollution issues. Particulate matter has a significant impact on the environment and human health, especially particle sizes that range below 10μm. Researches continuously work an improvement of fine particulate matter collections emitted from all kinds of sources, such as automobiles, industrial combustion, etc. Governments in many countries are planning to regulate the PM emission from the existing PM_10 (particle diameter<10μm) to new limits PM_2.5 (particle diameter<2.5μm) within the next few years. For this reason, present PM control system needs to be improved.</p><p>The objective of this work is to develop a dust flow separator type electrostatic precipitator (DFS-ESP) for the effective control of fine particulate matter emission from natural gas combustions. The characteristic of PM emitted from natural gas combustion is studied, and the performance of a DFS-ESP is evaluated by experiments and numerical predictions.</p><p>An experiment was conducted for natural gas combustion exhaust flow rates from 2.5 to 9 Nm^3/h, ESP applied voltages from 0 to 30kV, and gas temperature from 80 to 160°C. A series of particle measurements were conducted at upstream, downstream and middle of the DFS-ESP system by an optical particle counter for particle mass density, and by condensation nucleate particle counter for particle size distributions and particle number density. Particle sampled from the natural gas combustion system was also analyzed by an environmental scanning electron microscope (ESEM) technique. Flow velocity profile and pressure drop of the DFS-ESP were measured by a Pitot tube and diaphragm type pressure transducer, respectively.</p><p>The experimental results show that the particle size emitted from natural gas combustion ranges from 17 to 300nm in diameter, and the volume density is approximately from 5 x 10^8 #pt/m^3 to 5 x 10^9 #pt/m^3 depending on the combustion conditions. The dust flow separator can concentrate 90% of fine particles in 1 to 3% of the gas flow and divert it from the main flow to the ESP section where the particles can be removed. In terms of overall particle collection efficiency, the DFS-ESP system can remove up to 90% of the particles based on the number density. The pressure drop across the DFS-ESP is observed to be lower than lPa for the present range of flow rate, which is within acceptable limits for industrial applications.</p> / Thesis / Master of Applied Science (MASc)
277

DISSOLUTION KINETICS OF CALCIUM ALUMINATE IN STEELMAKING SLAGS

Miao, Keyan January 2017 (has links)
Inclusion removal is critical for the production of clean steel. A better understanding of removal processes require knowledge of the effect of process parameters on dissolution kinetics. The present research focuses on the kinetics of calcium aluminate inclusion dissolution in relevant steelmaking slags that contain CaO, Al2O3 and SiO2. In-situ observation of inclusion dissolution in slag is conducted using a high temperature, confocal scanning laser microscope (HT-CSLM). The particles used in this experimental work are produced in the laboratory and the production technique is explained in detail. The change in particle size is recorded with time and the effects of temperature, slag composition and inclusion morphology are investigated. The images are extracted from video and they are analysed to record the change in equivalent radius of a single particle during the dissolution process. The original and normalized dissolution data is used to determine the dissolution mechanism and to improve existing dissolution models. It has been found that an increase in temperature increases the dissolution rate. At 1550°C and 1600°C, there is no product layer formation at the slag-inclusion interface and so, the dissolution process is faster. Slag composition shows a significant influence on the dissolution kinetics due to differences in the dissolution driving force and viscosity. Additionally, the dissolution rate depends on the morphology of inclusion as available reaction sites vary significantly. Rate limiting steps are discussed based on the shrinking core model and diffusion in stagnant fluid model. It is shown that the rate limiting step for dissolution is the diffusion v through a product layer at 1500°C whereas it is mass transfer in slag at 1550°C and 1600°C. The diffusion coefficient of alumina is obtained by applying a one-dimension diffusion model. The calculated results varied between 5.5×10-11 and 2.6×10-10 m2/s depending on experimental conditions. Slag viscosity was found to be an important parameter for the modelling of the dissolution process. A modification to the correlation between the correction coefficient and slag viscosity was proposed. This modification improved the prediction of the dissolution path for calcium aluminate and alumina inclusions in steelmaking slags. This novel study provides an understanding of dissolution mechanisms and it offers data on the dissolution rate of CA2 inclusions in the slags related to the process of steelmaking. The results from this work can be used by steelmakers to aid in process design. / Thesis / Master of Applied Science (MASc) / The present work is a pioneer study on the dissolution of calcium aluminate particles in liquid oxide mixtures using the unique real-time observation approach. Experiments were conducted to provide a better understanding of the effects of various steelmaking conditions on inclusion removal during the refinement of liquid steel. An existing dissolution model is further refined by introducing an additional parameter that is correlated to the properties of oxide mixtures. It has been found that the dissolution model can be applied not only to calcium aluminate inclusions but also to alumina inclusions. Hence, the approach proves the potential university nature of the dissolution model. A clear understanding of the dissolution kinetics of inclusions helps to optimize the current steelmaking routes and enhance the removability of inclusions. Steel with a minimum amount of inclusions has better properties from all aspects, which improves its applicability in all fields.
278

New Strategies for Data Acquisition in Electron Ptychography: Energy Filtering and Reduced Sampling

Hashemi, Mohammad Taghi January 2019 (has links)
Electron Ptychography is a technique to retrieve the phase information of the medium through which the electron wave travels in a Transmission Electron Microscope (TEM). Phase calculation is carried out by acquiring an oversampled dataset of diffraction patterns from the sample and execution of a Fourier-based mathematical solution or algorithm using the collected dataset of intensity patterns. The phase of the electron wave contains valuable information about the structure of the material under study. In this contribution, we provide a scientific background necessary for understanding the phase calculation method, examine the capabilities and limitations of the Electron Ptychography in experimental setup and introduce two novel methods to increase the signal to noise ratio by using the same dose budget used in a classic Ptychography experiment. / Thesis / Master of Applied Science (MASc)
279

Fundamentals of micro-particle removal by liquid oxide

Sharma, Mukesh January 2019 (has links)
The grades of steel used for automotive bodies are interstitial free steel grades and titanium stabilized ultra-low carbon steel grades. During the manufacturing of these grades, the addition of titanium in liquid steel is achieved in the steel refining units and may cause processing problems. Titanium reacts with the dissolved aluminum and oxygen to form complex solid aluminum titanate type micro-particles (inclusions). During the flow of titanium alloyed steel grades containing solid inclusions (such as aluminum titanate and alumina type inclusions), the clog accompanied by steel skull can be formed at the submerged entry nozzle between the tundish and the mold. To reduce the effects of aluminum titanate type inclusions, they can be either modified or removed. The current study focused on the removal of Al2O3, TiO2, and Al2TiO5 inclusions by dissolving them in slag in the temperature range of 1430 – 1600 °C using a high-temperature confocal scanning laser microscope. In this technique, a single particle (inclusion) is placed on the surface of a solid slag, and the inclusion-slag system is heated to steelmaking temperatures. The dynamic changes in inclusion size are measured to determine dissolution kinetics and mechanism. This work has developed a complex oxide particle synthesis technique and provides the first-ever kinetic data for removal of aluminum titanate inclusions into steelmaking slags. It is found that Al2O3 inclusions have a slower dissolution rate than that of Al2TiO5 inclusions followed by TiO2 inclusions. The rate-controlling steps are investigated using a shrinking core model. It is shown that the rate-controlling step for dissolution of both Al2O3 and Al2TiO5 inclusion types is the mass transfer of alumina. Evidence in support of this finding is the particle-slag interface characterization by line scan analysis and calculated diffusivity values being inversely proportional to the viscosity of slag. The dissolution path of aluminum titanate is proposed in the following steps. First, aluminum titanate dissociates into alumina, titanium oxide and oxygen while slag penetrates through the particle. In the next step, the alumina and titanium oxide dissolves in slag, and the oxygen leaves the system. The existence of gas bubbles enhances the overall rate of Al2TiO5 dissolution. The current work establishes a detailed understanding of the dissolution of Al-Ti-O type inclusions in steelmaking slags. This knowledge will inform steelmakers on which inclusions of different chemistry can be removed preferably and develop strategies on better slag design to produce superior quality steel with reduced operational downtime. / Thesis / Doctor of Philosophy (PhD)
280

Studies of volatile evolution in magmatic systems using melt inclusions

Esposito, Rosario 15 August 2012 (has links)
Understanding volatile evolution associated with active volcanic magmatic systems is of paramount importance because volatiles control and determine the magnitude of an eruption owing to the large change in molar volume that volatile species show depending on their physical state (volatiles dissolved in silicate melts vs. volatiles exsolved as vapor). For active volcanic systems studying the volatile evolution can help to assess the potential hazard associated to a certain locality. Also, volatile evolution in magmatic system controls the formation of certain ore deposits. Despite the importance of understanding volatile evolution of magmatic systems, concentrations of volatiles of evolving magmas are not easily available especially for magmas originated in the deep crust. Fortunately, sample of melts can be entrapped as melt inclusion (MI) into growing igneous minerals in crystalizing magma chamber. After the entrapment, the crystal works as an insulating capsule from the external magmatic environment. Researchers have started to use MI because they provide some advantages in respect to the classical whole rock approach to petrological studies. One of the most important advantages is that MI often represent sample of a deep and non-degassed melt (glass) available at Earth's surface. In fact, with the exception of deep ocean basalts, igneous whole rocks found at the Earth's surface are degassed magmas. This dissertation is a compilation of four publications produced during six years of research and is addressed to give a contribution in understanding the volatile evolution in magmatic systems and also to improve the present understanding of information that can be obtained using the melt inclusions technique. In the first chapter, I present an alternative interpretation of H₂O-CO₂ trends obtained from MI. In this study, we demonstrate that these trends can be due to post entrapment crystallization on the wall of the MI and not to magma ascent. This alternative view is more realistic especially for cases where in the same phenocrysts MI show strongly different CO₂ concentrations. In the second chapter, I present a study to test for the MI reliability in recording volatile concentrations. We used the approach of the melt inclusion assemblage (MIA) that consists of analyzing groups of MI presumably entrapped at the same time and, thus, at same chemical and physical conditions. The results show that most of the MIA studied show consistent volatile concentrations corroborating the reliability of the MI technique. CO₂ shows the highest degrees of variability and we have assessed this behavior mostly to C-contamination in the surface of the sample. The third chapter is a study case (the Solchiaro eruption in Southern Italy) that shows the potential uses of MI to understanding the volatile evolution. I present a model showing the dynamic of the magma based on MI. This study also discusses the origin of anomalous MI and which MI provide the best information. The final chapter is dedicated to test the applicability of the new Linkam TS1400XY heating stage. I was able to show how this new microthermometric tool is capable of homogenizing MI at high temperature and to quench MI to a homogeneous glass state. / Ph. D.

Page generated in 0.0565 seconds