• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 878
  • 489
  • 380
  • 117
  • 71
  • 47
  • 36
  • 34
  • 31
  • 14
  • 8
  • 7
  • 6
  • 6
  • 6
  • Tagged with
  • 2777
  • 509
  • 474
  • 435
  • 370
  • 312
  • 296
  • 204
  • 189
  • 166
  • 162
  • 151
  • 148
  • 146
  • 144
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Déformations induites par l'humidification des sols fins compactés : apport d'un modèle de microstructure /

Ferber, Valéry. January 2006 (has links)
Texte remanié de: Thèse de doctorat--Génie civil--Nantes, 2005. Titre de soutenance : Sensibilité des sols fins compactés à l'humidification : apport d'un modèle de microstructure. / Bibliogr. p. 278-289. Résumé en français et en anglais.
132

Etude et contrôle de la corrosion feuilletante des alliages d'aluminium 2024 et 7449 par bruit électrochimique et émission acoustique analyse microstructurale et caractérisation de l'endommagement /

Bellenger, Fabien Idrissi Chbihi Hamzaoui, Hassane Mazille, Henri. January 2004 (has links)
Thèse de doctorat : Génie des Matériaux : Villeurbanne, INSA : 2002. / Titre provenant de l'écran-titre. Bibliogr. p.151-159. Index.
133

Analyse du comportement en fatigue oligocyclique à chaud d'aciers 10 CD 9.10 influence de la microstructure et de l'environnement /

Leon Sosa, José Balbino. Vogt, Jean-Bernard January 2001 (has links) (PDF)
Thèse de doctorat : Sciences des matériaux : Lille 1 : 2001. / N° d'ordre (Lille) : 2946. Résumés en français et en anglais. Bibliogr. en fin de chapitres.
134

Contribution à l'étude expérimentale et numérique à l'échelle de la microstructure de l'écaillage d'un alliage de titane

Boidin, Xavier Hafid Sabar. January 2008 (has links) (PDF)
Reproduction de : Thèse de doctorat : Mécanique : Physique et sciences pour l'ingénieur : Metz : 2005. / Titre provenant de l'écran-titre. Notes bibliographiques.
135

Effects of friction stir processing on the microstructure and mechanical properties of fusion welded 304L stainless steel /

Sterling, Colin J., January 2004 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Mechanical Engineering, 2004. / Includes bibliographical references (p. 27-40).
136

Photocatalytic application of metal oxide nanostructures

Ng, Yip-hang, 吳業恆 January 2014 (has links)
Metal oxides are important materials that are being developed for use in research and health-related applications. In particular, TiO2 and ZnO nanomaterials for applications in antibacterial coatings, pollutant purification, and photovoltaic devices have been extensively studied. The photocatalytic performances are highly dependent on morphology and crystal structure. However, there are few studies are comparing pollutant purification and antibacterial behavior of different TiO2 nanostructures and less studies of antibacterial activity related to fundamental properties of ZnO. In this study, the details of proposed mechanism and principle of antibacterial mechanisms of metal oxide nanostructures has been examined. Different TiO2 nanostructures (nanotubes, nanorods) have been successfully synthesized and their photocatalytic properties have been studied. In addition, studies of basic properties of commercial ZnO nanoparticles related to antibacterial activity have been performed. / published_or_final_version / Physics / Master / Master of Philosophy
137

Laser/microstructure interaction and ultrafast heat transfer

Heltzel, Alexander John 29 August 2008 (has links)
Not available
138

Aging and creep of non-plastic silty sand.

Yusa, Muhamad January 2015 (has links)
Soil aging refers to the increase in strength and stiffness that is exhibited over time after it is disturbed. It is common in granular soils, such as sands, occurring over periods from hours to years. There have been relatively numerous laboratory studies on sand aging phenomena. However the majority of these studies were conducted on relatively clean sand (fines content <5%) and were performed under isotropic condition. In nature, granular soils with fines content > 5% are not uncommon. This research is an attempt to gain further insight and understanding of mechanical aging on silty sand by conducting laboratory studies mostly under K0 condition, which better reflects the field condition, at both macro-scale (triaxial test) and micro-scale (fabric test). As many factors (e.g. plasticity of fines, fines content, grain size composition, angularity and shape) affect silty sand behaviour and not all those factors could be investigated during the study period, this study focused on mechanical aging of non-plastic silty sand with 15% fines content. Triaxial tests have been conducted in this study in order to observe creep behavior under different density, initial fabric, and consolidation stress paths (K0 and isotropic). The tests were conducted at low effective confining stress stresses i.e. ’3= 30 – 120 kPa as this is relevant to many geotechnical aging problems (e.g. time effects on freshly deposited or disturbed soils such as in the case of hydraulic fills, mine tailings, and post-liquefaction state of soil behaviour following earthquakes). Creep induced aging effects on undrained shear behaviour at small-strain (<0.1% of shear strain), were investigated, as this strain range is most common in geotechnical structures under gravity-induced working loads. Aging effects on one way cyclic behaviour were also studied. Some new key findings from these tests are as follows: (1) Creep following K0 consolidation indicated that the soil tends to expand radially over time, resulting in a tendency of increasing horizontal stress with time even at low stress. (2) Following K0 consolidation, density appears to have more significant effect on creep compared to initial shear stress ratio and mean effective stress; as demonstrated by loose samples (low stress ratio and mean effectives stress) which exhibited greater creep compared to those of dense sample (higher stress ratio and mean effective stress) (3) For loose soils, there is a trade-off between high confining stresses driving aging and collapsing pore space. Generally higher confining stress was found to increase creep tendency thus enhancing aging, however there was also found to be a certain confining pressure where the aging effects became less due to local structure collapse. (4) Initial fabric plays an important role on creep development, thus aging. For instance, dense dry pluviated samples developed larger axial strain over time but also gained less increase in stiffness compared to dense moist tamped samples. This suggests the importance of specimen preparation for laboratory testing that replicates the field scenarios e.g. natural deposition and associated fabric; (5) Dense K0 consolidated samples produce more increase in stiffness with time than corresponding isotropically consolidated samples. Hence, as the K0 condition generally reflects the level-ground free field stress condition better, it is important to test under K0 if the degree of stiffness gain is important; (6) The number of cycles to trigger cyclic softening and liquefaction for one way cyclic loading increases with the aging duration. In addition there is tendency that the aging effect is more pronounced at lower cyclic stress ratios. Fabric tests under K0 consolidation with similar variables as the triaxial tests were also performed. Some new insights and contributions have been obtained as follows: (1) Moist tamped samples, have particles that are more clustered together and structured than dry pluviated samples; (2) In terms of particle orientation, a change in the degree of orientation for both sand particles and ‘fines’ under constant loading was observed with time. The dominant (i.e. most) rotated particles (sand or “fines’) depends on the initial fabric and density; (3) Over time, under constant loading, growth of micro voids was observed for dense samples while those of loose samples contracted; (4) A new parameter, variance to mean void ratio of void distance, was introduced as a measure of the degree of interlocking during aging. The variance to mean ratio of void distance for moist tamped samples tends to decrease whereas those of dry pluviated samples tends to increase with time. An increase in variance and variance to mean ratio for dry pluviated samples indicates that particles are more clustered together with time; (5) Original work on spatial void distance for the numerical analysis of creep induced aging based on Kang et al. (2012) was conducted (note: the model’s boundary condition allows lateral expansion, which is not the same as the fabric tests conducted). The analysis showed that mean void size in dense soil tends to increase with time under constant load while for loose sample it tends to decrease. However the particles also clustered together more – increasing structure. (6) A microstructural study of “undisturbed samples”, obtained by gel-push sampling, of clean sand (fines content = 4%) and silty sand (fines content = 30%), was conducted to investigate anisotropy of natural fabric of granular soils. The results show that dry pluviation reflects the field condition more, in terms of natural deposition, than moist tamping. In addition, spatial void distance qualitatively indicated the undisturbed samples are relatively “very young”, even in terms of engineering time, as indicated by similar variance to mean ratio and kurtosis with those of 1 hour and 1 week reconstituted samples. This research has shown that there was a relation between changes in the microstructure over time and changes in macro mechanical properties of non-plastic silty sand. Further improvement in theoretical modeling (e.g. numerical modeling of creep on polydisperse granular material) and experimental aspects (e.g. examining different grain size composition and angularity, different fines content, the influence of the shape of sand and fines and use of the photo-elastic method) will allow a better understanding of the sand aging phenomenon in silty sand.
139

On the role of microstructure in ductile failure

Ghahremaninezhad Mianji, Ali 26 September 2011 (has links)
Failure in structural materials occurs initially by localization of deformation, and subsequently through a process of nucleation, growth and coalescence of voids. Predicting material failure requires a careful investigation of the different stages of damage evolution at the multiple scales. The main objective of this thesis is to explore the evolution of damage and to correlate this with the deformation of the material at the continuum and microstructural levels. This is accomplished through macroscopic measurements of strain evolution using digital image correlation and microscale measurements of strain and damage using optical and scanning electron microscopy. Three materials with different microstructure were examined. In oxygen-free, high-conductivity copper, a high-purity material without appreciable second phase particles, strain levels in the order of three were observed in the material without any trace of damage. Failure was observed to be triggered by plastic instability in the form of shear bands and the emergence of a prismatic cavity that grows in a self-similar fashion by an alternating slip mechanism. In Al 6061-T6, a material with a dispersion of second phase particles at a volume fraction of about 0.01, nucleation of damage does not appear until plastic strain levels of 0.5 to 1.0. Once damage in the form of particle fracture or decohesion at the interface initiates, subsequent failure follows by the void nucleation, growth and coalescence; but, dominated by the fluctuations in the distribution of second phase particles, final separation occurs in a highly localized layer of material on the order of the grain size, corresponding to a small increase in the overall strain. In nodular cast iron, a material with an initial porosity of about 0.10, growth of voids was observed initially, but this was terminated by a transition of the deformation into a localized region. Phenomenological models based on strain-to-failure and micromechanical models based on a mechanistic description of the microscale deformation are evaluated in light of the above examination of failure in these three classes of materials. / text
140

Textures and microstructures of rolled copper and x-brass

李振聲, Lee, Chun-sing. January 1991 (has links)
published_or_final_version / Mechanical Engineering / Doctoral / Doctor of Philosophy

Page generated in 0.0592 seconds