• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of an Unstructured 3-D Direct Simulation Monte Carlo/Particle-in-Cell Code and the Simulation of Microthruster Flows

Hammel, Jeffrey Robert 10 May 2002 (has links)
This work is part of an effort to develop an unstructured, three-dimensional, direct simulation Monte Carlo/particle-in-cell (DSMC/PIC) code for the simulation of non-ionized, fully ionized and partially-ionized flows in micropropulsion devices. Flows in microthrusters are often in the transitional to rarefied regimes, requiring numerical techniques based on the kinetic description of the gaseous or plasma propellants. The code is implemented on unstructured tetrahedral grids to allow discretization of arbitrary surface geometries and includes an adaptation capability. In this study, an existing 3D DSMC code for rarefied gasdynamics is improved with the addition of the variable hard sphere model for elastic collisions and a vibrational relaxation model based on discrete harmonic oscillators. In addition the existing unstructured grid generation module of the code is enhanced with grid-quality algorithms. The unstructured DSMC code is validated with simulation of several gaseous micronozzles and comparisons with previous experimental and numerical results. Rothe s 5-mm diameter micronozzle operating at 80 Pa is simulated and results are compared favorably with the experiments. The Gravity Probe-B micronozzle is simulated in a domain that includes the injection chamber and plume region. Stagnation conditions include a pressure of 7 Pa and mass flow rate of 0.012 mg/s. The simulation examines the role of injection conditions in micronozzle simulations and results are compared with previous Monte Carlo simulations. The code is also applied to the simulation of a parabolic planar micronozzle with a 15.4-micron throat and results are compared with previous 2D Monte Carlo simulations. Finally, the code is applied to the simulation of a 34-micron throat MEMS-fabricated micronozzle. The micronozzle is planar in profile with sidewalls binding the upper and lower surfaces. The stagnation pressure is set at 3.447 kPa and represents an order of magnitude lower pressure than used in previous experiments. The simulation demonstrates the formation of large viscous boundary layers in the sidewalls. A particle-in-cell model for the simulation of electrostatic plasmas is added to the DSMC code. Solution to Poisson's equation on unstructured grids is obtained with a finite volume implementation. The Poisson solver is validated by comparing results with analytic solutions. The integration of the ionized particle equations of motion is performed via the leapfrog method. Particle gather and scatter operations use volume weighting with linear Lagrange polynomial to obtain an acceptable level of accuracy. Several methods are investigated and implemented to calculate the electric field on unstructured meshes. Boundary conditions are discussed and include a formulation of plasma in bounded domains with external circuits. The unstructured PIC code is validated with the simulation of a high voltage sheath formation.
2

Simulation studies of direct-current microdischarges for electric propulsion

Deconinck, Thomas Dominique, 1982- 27 May 2010 (has links)
The structure of direct-current microdischarges is investigated using a detailed two-dimensional multi-species continuum model. Microdischarges are directcurrent discharges that operate at a relatively high pressure of about 100 Torr and geometric dimensions in the 10-100 micrometer range. Our motivation for the study of microdischarges comes from a potential application of these devices in microthrusters for small satellite propulsion. The Micro Plasma Thruster (MPT) concept consists of a direct-current microdischarge in a geometry comprising a constant area flow section followed by a diverging exit nozzle. A detailed description of the plasma dynamics inside the MPT including power deposition, ionization, coupling of the plasma phenomena with high-speed flow, and propulsion system performance is reported in this study. A two-dimensional model is developed as part of this study. The model consists of a plasma module coupled to a flow module and is solved on a hybrid unstructured mesh framework. The plasma module provides a self-consistent, multispecies, multi-temperature description of the microdischarge phenomena while the flow module provides a description of the low Reynolds number compressible flow through the system. The plasma module solves conservation equations for plasma species continuity and electron energy, and Poisson’s equation for the self-consistent electric field. The flow module solves mass, bulk gas momentum and energy equations. The coupling of energy from the electrostatic field to the plasma species is modeled by the Joule heating term which appears in the electron and heavy species energy equations. Discretization of the Joule heating term on unstructured meshes requires special attention. We propose a new robust method for the numerical discretization of the Joule heating term on such meshes using a cell-centered, finite volume approach. A prototypical microhollow cathode discharge (MHCD) is studied to guide and validate the modeling effort for theMPT. Computational results for the impedance characteristics as well as electrodynamic and chemical features of the discharge are reported and compared to experimental results. At low current (< 0.1 mA), the plasma activity is localized inside the cylindrical hollow region of the discharge operating in the so-called “abnormal regime”. For larger currents, the discharge expands over the outer flat surface of the cathode and operates in the “normal regime”. Transient relaxation oscillations are predicted in the plasma properties for intermediate discharge currents ranging from 0.1 mA to 0.3 mA; a phenomenon that is reported in experiments. The MPT, in its present configuration, is found to operate as an electrothermal, rather than as an electrostatic thruster. A significant increase in specific impulse, compared to the cold gas micronozzle, is obtained from the power deposition into the expanding gas. For a discharge voltage of 750 V, a power input of 650 mW, and an argon mass flow rate of 5 sccm, the specific impulse of the device is increased by a factor of 1.5 to a value of 74 s. The microdischarge remains mostly confined inside the micronozzle and operates in an abnormal regime. Gas heating, primarily due to ion Joule heating, is found to have a strong influence on the overall discharge behavior. The study provides crucial understanding to aid in the design of direct-current microdischarge based thrusters. / text
3

MEMS Wireless Sensor Networks for Spacecraft and Vacuum Technology

Andrew Strongrich (10691970) 06 May 2021 (has links)
<div>Wireless sensor networks are highly integrated across numerous industries from industrial</div><div>manufacturing to personal health monitoring. They provide several key benefits over</div><div>traditional wired systems including positioning flexibility, modularity, interconnectivity, and</div><div>robust data routing schemes. However, their adoption into certain sectors such as vacuum</div><div>and aerospace has been slow due to tight regulation, data security concerns, and device</div><div>reliability.</div><div>Lyophilization is a desiccation technique used to stabilize sensitive food and drug products</div><div>using vacuum sublimation. A series of wireless devices based on the Pirani architecture are</div><div>developed to quantify the spatial variations in pressure and temperature throughout this</div><div>process. The data is coupled to computational fluid dynamics simulations to estimate the</div><div>sublimation rate over time. This information is then used to quantify the heat and mass</div><div>transfer characteristics of the product, allowing estimates of product temperature and mass</div><div>flux to be obtained for an arbitrary cycle. This capability is significant, having the ability</div><div>to accelerate process development and reduce manufacturing time.</div><div>Drying performance during lyophilization is highly sensitive to the dynamics of the freezing</div><div>process. This work therefore also develops a wireless network to monitor both gas</div><div>pressure and temperature throughout the controlled ice nucleation process, a technique used</div><div>to improve batch uniformity by inducing simultaneous and widespread ice nucleation via</div><div>adiabatic decompression. The effects of initial charge pressure, ballast composition, and vial</div><div>size are investigated. Experimental data is supported by numerical modeling to describe the</div><div>evolution of the true gas temperature during the discharge event.</div><div>Finally, The mechanisms governing the lyophilization process are directly applied to the</div><div>aerospace industry in the form of a novel milliNewton-class evaporation-based thruster concept.</div><div>The device was tested under vacuum using a torsional balance and demonstrated peak</div><div>thrust magnitudes on the order of 0.5 mN. A state observer model was then implemented</div><div>to decouple the dynamics of the balance with the time-dependent thrust input. With this</div><div>model the true time-dependent thrust output and corresponding thruster performance are</div><div>analyzed.</div>

Page generated in 0.0572 seconds