• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sedimentation Patterns and Hydrodynamics of a Wave-Dominated Tidal Inlet: Blind Pass, Florida

Tidwell, David K 12 April 2005 (has links)
Blind Pass, a heavily structured wave-dominated tidal inlet on the west central coast of Florida, has undergone substantial morphologic changes in the past 150 years. Initially Blind Pass was a mixed-energy inlet. In 1848 a hurricane opened a new inlet to the north called Johns Pass, which captured a large portion of the tidal prism of Blind Pass. Since then Blind Pass migrated southward until it was structurally stabilized in 1937. The decreasing tidal prism resulted in significant inlet channel filling. The channel has been dredged 12 times since 1937. The present inlet is stabilized by two jetties and a series of seawalls. Detailed time-series field measurements of bathymetry and tidal flows were conducted between 2001 and 2004, after the last channel dredging in the summer of 2000. The measured depositional rate in the inlet channel approximately equals the net southward longshore transport rate. This suggests that the inlet has served as a trap for the southward longshore transport allowing negligible bypassing to the eroding downdrift beach. Most of the active sedimentation occurs on the northern side of the inlet. The sediment in the thalweg is largely coarse shell lag, indicating adequate sediment flushing by the ebbing tide. The cross-channel flow measurements revealed that ebb flow was approximately twice as high in the channel thalweg as compared with the rest of the channel. The flood flow was largely uniform across the entire inlet and dominated over the northern portion of the inlet due to the weak ebb flow there. This cross-channel flow pattern is crucial to the understanding of the sedimentation patterns in the Blind Pass channel. Two years after the last dredging the mouth has become shallow enough to induce wave breaking across the shoal area. Distinctive seasonal patterns of sedimentation were measured thereafter in the inlet channel, influenced by seasonal wave climate. The sedimentation is event driven from passage of cold fronts bringing elevated wave energy that accelerates the southward longshore transport. During normal conditions the sediment deposited in the mouth area is redistributed further into the inlet by the flood current combined with wave-driven current.
2

Morphodynamics of Bunces Pass, Florida

Wilhoit, Jack C, II 18 November 2004 (has links)
Bunces Pass is an unstructured tide-dominated inlet just north of the main entrance to Tampa Bay, Florida. The inlet has been stable for at least 130 years, as the size, shape, and orientation have remained unchanged. The morphological evolution of the Bunces Pass ebb-tidal delta is influenced by adjacent inlets. Historically, the ebb tidal delta was extremely large, due to the presence of the south channel of Pass-A-Grille Pass. As the tidal prism decreased through the south channel, the sheltering effect produced by the large ebb tidal delta diminished, and large volumes of sand began migrating shoreward. Sediment from the ebb tidal delta accreted along "the Reefs", formed both North Bunces Key and South Bunces Key, and accreted on Mullet Key south of the inlet. Tidal currents at Bunces Pass are primarily ebb-dominant during both summer and winter seasons, though there is flood dominance for several days during neap tides. The ebb dominance is primarily due to the large back-barrier embayment of Tampa Bay, which results in a spring ebb tidal prism of 2.02 x 107 m³. This tidal prism is more than 400 times the corresponding littoral drift. It is primarily responsible for maintaining the inlet's stability, as well as the development of its large ebb-tidal delta. Sediments from the ebb tidal delta at Bunces Pass reflect different degrees of wave versus tidal energy. The strongest tidal currents present throughout the entire ebb tidal delta complex mechanically weather shell gravel in the main channel, producing a shelly, fine quartz sand with relatively high amounts of shell gravel and carbonate sand. This sub-facies is also present on the north channel margin linear bar, due to the interaction of waves, tidal currents, and a southerly littoral drift along this coastal reach. Fine, quartz sand dominates the off shore and swash platform environments. The present situation at Bunces Pass shows a stabilized, tide-dominated inlet with a large, elongate ebb delta that is unlikely to change significantly in the future if present conditions are maintained. The prevalent ebb-dominance suggests that the inlet is hydraulically connected to the adjacent and much larger Egmont Channel inlet system, which also serves Tampa Bay. Strong ebb-tidal currents have kept Bunces Pass in dynamic equilibrium with its surrounding environment. The large ebb tidal prism is responsible for explaining how a tide-dominated inlet is maintained in a microtidal environment.

Page generated in 0.0501 seconds