• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Treatment of Phenol in Water Using Microwave-assisted Advanced Oxidation Processes

2014 April 1900 (has links)
Phenol and its compounds are highly toxic even in low concentration, and have become the subject of intense research during the last two decades. Effluents from industries such as oil refining, paper milling, olive oil extraction, wood processing, coal gasification and textiles and resin manufacturing and agro-industrial wastes discharge phenols at levels much higher than the toxic levels set for this compound. Advanced Oxidation Processes (AOPs) such as UV, UV-TiO2, UV-H2O2, O3 and UV-O3 have become popular in recent years as efficient treatment methods for recalcitrant compounds like phenol. The effect of microwave (MW) and combined MW-UV treatment on degradation of phenol was studied in aqueous solution in the presence and absence of TiO2 under controlled temperature conditions. It was found that the efficiency of MW and MW-UV processes for the degradation of phenol was less than 10% after 120 minutes of treatment. However, the efficiencies of MW-TiO2 (hydrothermal) and MW-TiO2 (sol-gel) were slightly more than those of the above processes at 12 to 15% after 120 minutes, which might be due to adsorption of the phenol on the surface of TiO2 particles. It also was observed that MW-UV-TiO2 was superior to any other process studied for the degradation of phenol. At natural pH, the degradation efficiency of MW-UV-TiO2 (HT) on 1500 ppm of phenol in water was 23%, and for MW-UV-TiO2 (SG) it was 20%. Hence, it can be concluded that the catalyst (TiO2) prepared by the hydrothermal (HT) method had better catalytic activity than TiO2 prepared by the sol-gel (SG) method, which might be due to its structural and optical characteristics. Of the two developed reactors which are MW and a combined MW-UV reactor, MW-UV combined with TiO2 could be used for most successful degradation of phenol.
2

Structural and microwave dielectric properties of ceramics of Ca(1-x)Nd2x/3TiOs

Lowndes, Robert January 2012 (has links)
Ca(1-x)Nd2x/3TiO3 and MgTiO3-Ca0.61Nd0.26TiO3 composite ceramics were prepared by the mixed oxide route and characterised in terms of their structure, microstructure and properties. Ceramics sintered at 1450-1500oC achieved better than 95% of the theoretical density. X-Ray diffraction (XRD) revealed that Ca(1-x)Nd2x/3TiO3 ceramics were single phase for all compositions. For x ≤ 0.39 the structure was Pbnm with lattice parameters of a = b = √2ac and c = 2ac and a tilt system of a-a-c+. Compositions with x ≥ 0.48 could be better described by a C2/m structure with lattice parameters of a = b = c = 2ac. Scanning electron microscopy (SEM) revealed that the ceramics had grain sizes in the 5-70 μm range with abnormal grain growth for Nd3+ rich compositions. Images revealed that the twin domains in CaTiO3 were needle shaped and on addition of Nd3+ the domain morphology becomes more complex. The needle domain morphology returns for Ca0.43Nd0.38TiO3. High resolution electron microscopy (HAADF-STEM and electron diffraction) was used to probe cation-vacancy ordering (CVO) in the lattice. It was found that there was no CVO for x < 0.48 whilst at x = 0.48 there was evidence of a transition to a short range CVO. A transition to long range ordering is almost complete for the Ca0.1Nd0.6TiO3. The structural characteristics of Ca(1-x)Nd2x/3TiO3 ceramics as a function of temperature were investigated using in-situ XRD and Raman spectroscopy. All compositions were found to have the same structure across the entire temperature range. The Raman spectroscopy as a function of temperature indicated a possible transition with similar characteristics to a Curie temperature in a ferroelectric ceramic. The transition temperature was dependent on the cation ordering with the ceramics with greatest degree of disorder having the lowest transition temperature. The microwave dielectric properties of the samples were measured by a cavity resonance method in the 2-4GHz range. The relative permittivity (εr) was found to decrease from 180 for CaTiO3 to approximately 80 for Ca0.1Nd0.6TiO3 with an exponential dependence between the composition and the property. The temperature coefficient of resonant frequency (τf) ranged from +770ppmK-1 for CaTiO3 to +200ppmK-1 for Ca0.1Nd0.6TiO3. The Q x f for CaTiO3 was found to be 6000GHz and this increased to a maximum of 13000GHz for Ca0.7Nd0.2TiO3. After the Ca0.7Nd0.2TiO3 composition, the Q x f decreased to approximately 1100GHz for Ca0.1Nd0.6TiO3. The εr and τf were found to be mainly dependent on the composition of the ceramics whilst the Q x f value was more complex being dependent on the width of the twin domains in the grains. CaTiO3 samples fabricated by spark plasma sintering at 1150oC and above achieved better than 95% of the theoretical density. XRD revealed only a single phase with an orthorhombic Pbnm structure at room temperature and a tilt system of a-a-c+. SEM confirmed that the samples were single phase with grain size between 500nm-5μm. Transmission electron microscopy (TEM) of specimens sintered at 1150oC showed evidence of both (011) and (112) type domains. The τf of the ceramics was shown to be dependent on the volume of the unit cell, in agreement with the Bosman-Havinga equations. The ceramic sintered at 1150oC showed improvement in the Q x f value compared to samples prepared by conventional sintering. The structure, microstructure and properties of composite ceramics based on the MgTiO3-Ca0.61Nd0.26TiO3 system were investigated. Optimum properties were achieved at a composition of 0.8MgTiO3-0.2Ca0.61Nd0.26TiO3 with τf = -0.1ppmK-1, Q x f of 39000GHz and εr of 25.4. XRD revealed the presence of 3 phases including Ca0.61Nd0.26TiO3, MgTiO3 and MgTi2O5. The grain size of the ceramics was typically 5μm. The Q x f value was sensitive to the cooling rate and these changes could be related to changes in the vibrational properties of the lattice through changes in the lattice parameters.
3

The characteristics and applications of (Ba,Sr)Sm2Ti4O12 microwave dielectric ceramics

Cheng, Ping-Shou 21 January 2002 (has links)
The aim of this work was to contribute to a better understanding of the characteristics and applications of (Ba,Sr)Sm2Ti4O12 microwave dielectric ceramics. The major contents are as follows. Firstly, to establish the correct reaction sequence of (Ba,Sr)Sm2Ti4O12, phases present in different calcining temperatures are identified by X-ray diffraction patterns. When different calcining temperatures are used, the source materials BaO (BaCO3), TiO2 and Sm2O3 are consumed at different calcining temperatures; the intermediate phases BaTiO3, BaTi4O9, and Sm2Ti2O7 reveals and consume at different calcining temperatures before the BaSm2Ti4O12 phase starts to reveal. However, the real solid reaction processes are usually more complex, and some intermediate reaction processes might happen. Secondly, in the (Ba1-xSrx)Sm2Ti4O12 system, SrO can be used to substitute the BaO site and improve the microwave dielectric characteristics. In this study, we find that SrO content in the range of 2 ~ 6 mol% is the acceptable composition because of the higher Q*f values and acceptable and values. Thirdly, the CaO-BaO- Li2O-Sm2O3-TiO2(CBLST) ceramics system was studied. In general, a dielectric material with a high has a large . To adjust to close 0ppm/oC, two or more compounds having negative and positive values are employed to form a solid solution or mixed phases in order to obtain the desired dielectric properties. In this study, BaO was used to substitute the CaO site and improved the microwave dielectric characteristics. Finally, the (Ba0.98Sr0.02)Sm2Ti4O12 system was adopted as a case of applications in dielectric resonator antenna. It possessed a low value of -5.96ppm/¢XC, a high value of 79, and a high Q*f value of 7920 GHz (at 3.311GHz). With the loading of a (Ba0.98Sr0.02)Sm2Ti4O12 dielectric resonator (DR), a circular polarization (CP) design of DR antenna through a cross slot of unequal slot lengths in the ground plane of a microstrip line is fabricated. From the results obtained, it is also found that the present proposed CP design has relatively relaxed manufacturing tolerances, as compared to the conventional CP designs that require slight geometrical modifications of the microstrip patch or DR elements. With the loading of a (Ba0.98Sr0.02)Sm2Ti4O12 superstrate layer and a 1W chip resistor, a compact rectangular microstrip antenna with enhanced gain and wider bandwidth can be implemented. The antenna size is reduced to be ~ 6.05% times of a conventional patch antenna, the proposed structure can have an operating bandwidth of more than six times that of a conventional patch antenna, with an almost equal antenna gain level.
4

The Study of MCAS Glass-doped Al2O3-TiO2 Microwave Ceramics

Chang, Shan-Li 29 June 2002 (has links)
Microwave dielectric resonators (DRs) are being widely used in microwave telecommunication devices owing to their excellent characteristics of suitable dielectric constant, good temperature stability, and low dielectric loss. In this study, the crystalline phase and the microwave dielectric properties of the (1-x)Al2O3 - xTiO2 (x=0.08, 0.12, 0.16) compositions with 2wt%, 4wt%, 6wt%, and 8wt% MgO-CaO-Al2O3-SiO2 (MCAS) glass addition have been investigated. By combining the material Al2O3 with negative temperature coefficient of the resonant frequency (£nf = -55 ppm/¢J) and the material TiO2 with positive £nf value (£nf = +450 ppm/¢J), it is desired to produce the ceramics with £nf ~0 ppm/¢J. The MCAS is used as liquid-phase sintering aid to lower down the sintering temperature. In the MCAS-doped (1-x)Al2O3 - xTiO2 system, the Al2TiO5 phase starts to appear at about 1250¢J, and then the crystalline intensity of Al2TiO5 phase increases with the increase of sintering temperatures and MCAS glass content, until the temperatures that TiO2 is consumed. As the sintering temperature increases, the maximum dielectric constants and Q¡Ñf values can be obtained at 1250¢J, and the £nf values shift from positive to negative. The optimum £nf value of ¡V0.6 ppm/¢J exists in the 88mol%Al2O3 - 12mol%TiO2 composition with 2wt% MCAS addition and sintering temperature of 1300¢J. The MCAS content, TiO2 content, and sintering temperature will result in the variation of microwave dielectric properties. In this study, MCAS-doped (1-x)Al2O3 - xTiO2 system exhibits the microwave dielectric properties of¡G £`r=7~9.5, Q¡Ñf=6500~11000, and £nf = -60 to +40ppm/¢J. By adjusting the MCAS content, TiO2 content, and sintering temperatures, ceramics with good microwave properties can be obtained in the MCAS-doped (1-x)Al2O3 - xTiO2 system.
5

Study of AB2O6 (A=Mg, Zn; B=Ta, Nb) Microwave Dielectric Materials and its Applications

Cheng, Chien-Min 11 August 2008 (has links)
With the rapidly progress in the microwave communication systems, miniaturization and performance enhancement have become two main requirements of the microwave devices. Microwave dielectric substrates would be the best choice for these requirements, because high dielectric constant of the substrates would reduce the size of the devices, high quality factor of the substrates would improve the microwave characteristics of the devices, and low temperature coefficient of resonant frequency would reduce the shift of the operating frequencies due to the variation of temperature. As mentioned above, the main research of this dissertation is divided into two parts: microwave dielectric materials and microwave filters. 1. Microwave dielectric materials AB2O6 (A=Mg, Zn; B=Ta, Nb) microwave dielectric ceramics have been developed as the microwave dielectric resonators (DRs) in the past, because the dielectric resonators fabricated by AB2O6 ceramics reveal the good microwave dielectric characteristics. However, the temperature coefficients of resonant frequency of MgTa2O6, MgNb2O6, ZnTa2O6, and ZnNb2O6 ceramics are still not good enough for the applications at the microwave frequency. In addition, MgTa2O6 and ZnTa2O6 ceramics reveal positive temperature coefficients of resonant frequency but the MgNb2O6 and ZnNb2O6 ceramics reveal negative temperature coefficients of resonant frequency. In this study, combining of MgNb2O6 ceramics (with negative temperature coefficients of resonant frequency) and MgTa2O6 ceramics (with positive temperature coefficients of resonant frequency) to form Mg(Ta1-xNbx)2O6 ceramics and combining of ZnNb2O6 ceramics (with negative temperature coefficients of resonant frequency) and ZnTa2O6 ceramics (with positive temperature coefficients of resonant frequency) to form Zn(Ta1-xNbx)2O6 ceramics, which all reveal near-zero temperature coefficients of resonant frequencyand are suitable for the applications of microwave communication devices. The sintering and microwave dielectric characteristics of the Mg(Ta1-xNbx)2O6 and Zn(Ta1-xNbx)2O6 dielectric ceramics are also investigated. 2. Wide-band, dual-band, tri-band, and tetra-band bandpass filters Microwave filters have been widely used in the communication systems. The optimal microwave dielectric characteristics of AB2O6 ceramics developed in this thesis were adopted as the substrates of the filters. The performance of the filters was improved obviously due to the high dielectric constant and high quality factor of the microwave dielectric ceramic substrates. At first, a wide-band and a dual-band (2.45/5.2 GHz) bandpass filters are developed by the combination technique of modified end-coupled microstrip lines and half-wavelength ombination technique will generate three transmission zeros easily in the stop-band to improve the characteristics of the filters. And the next, the tri-band (1.57/2.45/5.2 GHz) bandpass filters are developed by the combination of modified end-coupled microstrip lines, outer-frame structures and half-wavelength U-shaped hairpin resonators. The Defected Grounded Structures (DGS) are add into the ground planes of the tri-band bandpass filters to generate the fourth frequency (3.5 GHz), hence, the tetra-band (1.57/2.45/3.5/5.2 GHz) bandpass filters are accomplished. In addition, due to the uses of the high dielectric constant ceramic substrates and the combination techniques, the size of this tetra-band bandpass filter is only 26.3 mm*9.9 mm. Besides, six deeply transmission zeros are generated in the stop-band to improve the characteristics of the filters (1~7 GHz), all the characteristics of this tetra-band filters (frequency, bandwidth, insertion loss, and stop-band rejection) are suitable for the applications of modern communication systems.
6

Growth and Characterization of Thin Films of High Performance Microwave Dielectrics

January 2013 (has links)
abstract: Microwave dielectrics are widely used to make resonators and filters in telecommunication systems. The production of thin films with high dielectric constant and low loss could potentially enable a marked reduction in the size of devices and systems. However, studies of these materials in thin film form are very sparse. In this research, experiments were carried out on practical high-performance dielectrics including ZrTiO4-ZnNb2O6 (ZTZN) and Ba(Co,Zn)1/3Nb2/3O3 (BCZN) with high dielectric constant and low loss tangent. Thin films were deposited by laser ablation on various substrates, with a systematical study of growth conditions like substrate temperature, oxygen pressure and annealing to optimize the film quality, and the compositional, microstructural, optical and electric properties were characterized. The deposited ZTZN films were randomly oriented polycrystalline on Si substrate and textured on MgO substrate with a tetragonal lattice change at elevated temperature. The BCZN films deposited on MgO substrate showed superior film quality relative to that on other substrates, which grow epitaxially with an orientation of (001) // MgO (001) and (100) // MgO (100) when substrate temperature was above 500 oC. In-situ annealing at growth temperature in 200 mTorr oxygen pressure was found to enhance the quality of the films, reducing the peak width of the X-ray Diffraction (XRD) rocking curve to 0.53o and the &chi;min of channeling Rutherford Backscattering Spectrometry (RBS) to 8.8% when grown at 800oC. Atomic Force Microscopy (AFM) was used to study the topography and found a monotonic decrease in the surface roughness when the growth temperature increased. Optical absorption and transmission measurements were used to determine the energy bandgap and the refractive index respectively. A low-frequency dielectric constant of 34 was measured using a planar interdigital measurement structure. The resistivity of the film is ~3×1010 ohm&middot;cm at room temperature and has an activation energy of thermal activated current of 0.66 eV. / Dissertation/Thesis / M.S. Materials Science and Engineering 2013
7

Low cost and conformal microwave water-cut sensor for optimizing oil production process

Karimi, Muhammad Akram 08 1900 (has links)
Efficient oil production and refining processes require the precise measurement of water content in oil (i.e., water-cut) which is extracted out of a production well as a byproduct. Traditional water-cut (WC) laboratory measurements are precise, but are incapable of providing real-time information, while recently reported in-line WC sensors (both in research and industry) are usually incapable of sensing the full WC range (0 – 100 %), are bulky, expensive and non-scalable for the variety of pipe sizes used in the oil industry. This work presents a novel implementation of a planar microwave T-resonator for fully non-intrusive in situ WC sensing over the full range of operation, i.e., 0 – 100 %. As opposed to non-planar resonators, the choice of a planar resonator has enabled its direct implementation on the pipe surface using low cost fabrication methods. WC sensors make use of series resonance introduced by a λ/4 open shunt stub placed in the middle of a microstrip line. The detection mechanism is based on the measurement of the T-resonator’s resonance frequency, which varies with the relative percentage of oil and water (due to the difference in their dielectric properties). In order to implement the planar T-resonator based sensor on the curved surface of the pipe, a novel approach of utilizing two ground planes is proposed in this work. The innovative use of dual ground planes makes this sensor scalable to a wide range of pipe sizes present in the oil industry. The design and optimization of this sensor was performed in an electromagnetic Finite Element Method (FEM) solver, i.e., High Frequency Structural Simulator (HFSS) and the dielectric properties of oil, water and their emulsions of different WCs used in the simulation model were measured using a SPEAG-dielectric assessment kit (DAK-12). The simulation results were validated through characterization of fabricated prototypes. Initial rapid prototyping was completed using copper tape, after which a novel reusable 3D-printed mask based fabrication was also successfully implemented, which would resemble screen printing if it were to be implemented in 3D. In order to verify the design’s applicability for the actual scenario of oil wells, where an oil/water mixture is flowing through the pipes, a basic flow loop was constructed in the IMPACT laboratory at KAUST. The dynamic measurements in the flow loop showed that the WC sensor design is also equally applicable for flowing mixtures. The proposed design is capable of sensing the WC with a fine resolution due to its wide sensing range, in the 80 – 190 MHz frequency band. The experimental results for these low cost and conformal WC sensors are promising, and further characterization and optimization of these sensors according to oil field conditions will enable their widespread use in the oil industry.
8

Spectroscopie diélectrique hyperfréquence de cellules individualisées sous électroporation / Microwave dielectric spectroscopy of single cells under electroporation

Tamra, Amar 09 March 2017 (has links)
L'électroporation est un procédé physique qui consiste à appliquer des impulsions de champ électrique pour perméabiliser de manière transitoire ou permanente la membrane plasmique. Ce phénomène est d'un grand intérêt dans le domaine clinique ainsi que dans l'industrie en raison de ses diverses applications, notamment l'électrochimiothérapie qui combine les impulsions électriques à l'administration d'une molécule cytotoxique, dans le cadre du traitement des tumeurs. L'analyse de ce phénomène est traditionnellement réalisée à l'aide des méthodes optique et biochimique (microscopie, cytométrie en flux, test biochimique). Elles sont très efficaces mais nécessitent l'utilisation d'une large gamme de fluorochromes et de marqueurs dont la mise en œuvre peut être laborieuse et coûteuse tout en ayant un caractère invasif aux cellules. Durant ces dernières années, le développement de nouveaux outils biophysiques pour l'étude de l'électroporation a pris place, tels que la diélectrophorèse et la spectroscopie d'impédance (basse fréquence). Outre une facilité de mise en œuvre, ces méthodes représentent un intérêt dans l'étude des modifications membranaires de la cellule. De là vient l'intérêt d'opérer au-delà du GHz, dans la gamme des micro-ondes, pour laquelle la membrane cytoplasmique devient transparente et le contenu intracellulaire est exposé. L'extraction de la permittivité relative suite à l'interaction champ électromagnétique/cellules biologiques reflète alors l'état cellulaire. Cette technique, la spectroscopie diélectrique hyperfréquence, se présente comme une méthode pertinente pour analyser les effets de l'électroporation sur la viabilité cellulaire. De plus, elle ne nécessite aucune utilisation des molécules exogènes (non-invasivité) et les mesures sont directement réalisées dans le milieu de culture des cellules. Deux objectifs ont été définis lors de cette thèse dont les travaux se situent à l'interface entre trois domaines scientifiques : la biologie cellulaire, l'électronique hyperfréquence et les micro-technologies. Le premier objectif concerne la transposition de l'électroporation conventionnelle à l'échelle micrométrique, qui a montré une efficacité aussi performante que la première. La deuxième partie du travail concerne l'étude par spectroscopie diélectrique HyperFréquence de cellules soumises à différents traitements électriques (combinés ou non à une molécule cytotoxique). Ces travaux présentent une puissance statistique et montrent une très bonne corrélation (R2 >0 .94) avec des techniques standards utilisées en biologie, ce qui valide 'biologiquement' la méthode d'analyse HF dans le contexte d'électroporation. Ces travaux montrent en outre que la spectroscopie diélectrique hyperfréquence s'avère être une technique puissante, capable de révéler la viabilité cellulaire suite à un traitement chimique et/ou électrique. Ils ouvrent la voie à l'analyse 'non-invasive' par spectroscopie diélectrique HyperFréquence de cellules électroporées in-situ. / Electroporation is a physical process that consists in applying electric field pulses to transiently or permanently permeabilize the plasma membrane. This phenomenon is of great interest in the clinical field as well as in the industry because of its various applications, in particular electrochemotherapy which combines electrical pulses with the administration of a cytotoxic molecule in the treatment of tumors. The evaluation of this phenomenon is raditionally carried out using optical and biochemical methods (microscopy, flow cytometry, biochemical test). They are very effective but require the use of a wide range of fluorochromes and markers, which can be laborious and costly to implement, while being invasive to the cells. In recent years, the development of new biophysical tools for the study of electroporation has taken place, such as dielectrophoresis and impedance spectroscopy (low frequency). In addition to the ease of implementation, these methods are of interest in the study of membrane modifications of the cell. Hence the advantage of operating beyond the GHz, in the range of microwaves, for which the cytoplasmic membrane becomes transparent and the intracellular content is exposed. The extraction of the relative permittivity as a result of the electromagnetic field / biological cell interaction then reflects the cell state. This technique, microwave dielectric spectroscopy, is a relevant method for analyzing the effects of electroporation on cell viability. Moreover, it does not require any use of the exogenous molecules (non-invasive) and the measurements are directly carried out in the culture medium of the cells. Two objectives were defined during this thesis whose work is located at the interface between three scientific fields: cellular biology, microwave electronics and micro-technologies. The first objective concerns the transposition of conventional electroporation to the micrometric scale, which has shown an efficiency as efficient as the first. The second part of the work concerns the study by HighFrequency dielectric spectroscopy of cells subjected to different electrical treatments (combined or not with a cytotoxic molecule). This work presents a statistical power and shows a very good correlation (R2> 0.94) with standard techniques used in biology, which biologically validates the HF analysis method in the context of electroporation. This work also shows that microwave dielectric spectroscopy proves to be a powerful technique capable of revealing cell viability following chemical and / or electrical treatment. They open the way to 'non-invasive' analysis by hyper-frequency dielectric spectroscopy of electroporated cells in situ.

Page generated in 0.0583 seconds