• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 246
  • 219
  • 1
  • 1
  • Tagged with
  • 467
  • 459
  • 459
  • 447
  • 314
  • 162
  • 162
  • 147
  • 147
  • 120
  • 96
  • 89
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

"Inneklima i tårnkabin ved flyplass. Systemer og regulering for oppvarming, luftbehandling og kjøling." / "Indoor climate in the Control Tower at an Airport. Appropriate Systems for operation and control of Heating, Air Handling and Refrigeration Installations."

Heier, Kristian January 2010 (has links)
<p>Sammendrag Denne masteroppgaven tar for seg klimatiseringsløsningen i et kontrolltårn ved en flyplass. Kontrolltårnkabinen er studert med mål om å komme frem til en optimal systemløsning med hensyn på energieffektiv drift og godt arbeidsmiljø. Denne delen av kontrolltårnet er av en komplisert form, og består av store glassfasader. Dette gir en utfordring med å forsyne flygelederne med et godt nok inneklima. Det er fokusert på akustisk, atmosfærisk og termisk inneklima i dette arbeidet. Energiberegninger og simuleringer av inneklimatiske verdier i oppgaven er gjort i beregningsprogrammet SIMIEN 4.034. Klimatiseringsløsningen som var tiltenkt tårnkabinen består av omrøringsventilasjon, kjølebafler og radiatorer. En vurdering er fremlagt av denne systemløsningen sammen med andre forbedringer for kontrolltårnkabinen. Alternative klimatiseringsløsninger er så presentert, og en ny, forbedret systemløsning foreligger som resultat av inneklimatiske og energimessige vurderinger. Den nye, foreslåtte klimatiseringsløsningen består av personlig ventilering ved arbeidsbordet til flygelederne, i tillegg til den opprinnelig valgte løsningen. Dette gir flygelederne individuell kontroll over sitt eget lokale klima. Ettersom personer har veldig forskjellige preferanser særlig til termiske forhold, vil individuell kontroll av luftens temperatur og hastighet føre til en større komfortmessig gevinst. Termisk komfort påvirker prestasjon og mental ytelse, og termisk balanse med omgivelsene gir maksimal uttelling for arbeidseffektivitet. Personlig ventilasjon tilfører samtidig friskluft direkte til pustesonen, og sørger dermed for tilnærmet forurensingsfri luft til flygelederne. Det totale netto energibehovet for denne klimatiseringsløsningen ligger 3,2 % høyere enn for Multiconsults tiltenkte løsning. For en forbedret energieffektivitet og inneklima i tårnkabinen, ble det i tillegg anbefalt å igangsette andre tiltak: En installering av radiatorer med lavere konveksjonsgrad vil gi en mer behagelig oppvarming og en reduksjon av kaldras fra vinduene. For å hidre den store solinnstrålingen gjennom sommeren vil en bruk av vinduer med lavere solfaktor føre til et mindre kjølebehov og et bedre termisk inneklima. En reduksjon i solfaktoren på 5 % vil kunne dekke det høyere energibehovet for den nye klimatiseringsløsningen. For å hindre lav relativ luftfuktighet gjennom vinterperioden bør det installeres en befukter i ventilasjonsanlegget. Dermed installeres det også en fuktsensor i tillegg til en sensor for strålingstemperaturen. Disse to parametrene er svært viktige for opplevelsen av et godt inneklima.</p>
192

Varmepumpende systemer for produksjon av "slurry" med fokus på varmeovergang / Heat Pumping Systems for Producton of Slurry with Focus on Heat Transfer

Hagen, Tore January 2010 (has links)
<p>Helt fra 25 år tilbake har issørpe som ny teknologi for å bedre kjølebetingelsene for fisk fått mye oppmerksomhet. Etter nesten 30 år med kontinuerlig innsats fra forskere og produsenter, har issørpe etablert seg som en anerkjent og meget god kjøleteknologi på dette området, samt et egnet medium for konservering. Når det gjelder håndtering av issørpen ombord på fiskebåter, er det kjent at på de fleste fiskebåter benyttes issørpen til direkte kjøling av fisk og annen fangst. Issørpen blir da produsert av sjøvann ombord på båtene, og når fangsten tas inn blir den blandet med issørpe i beholdere. Ulik håndtering av issørpen ble prøvd ut gjennom praktiske forsøk. Basert på målinger av kjernetemperatur i modellprodukt ble kjøleeffekten i fire ulike metoder for bruk av issørpe sammenlignet. De ulike metodene bestod av tre ulike tilfeller med hensyn til drenering av issørpen, hhv. uten drenering, kontinuerlig drenering og forhåndsdrenering (større iskonsentrasjon enn uten drenering). I tillegg ble en siste metode med luftinnsprøyting i bunn av issørpebeholderen prøvd ut som et tiltak for å bedre varmeovergangen. Issørpen ble også sammenlignet med tradisjonell kjøling med flak-is. Kjøleprosessene ble modellert i MATLAB og simuleringer kjørt i forsøk på å tallfeste kjøleeffekten i form av et varmeovergangstall. Det ble ved siden av modellproduktene utviklet et system beregnet for studering av interaksjonen mellom issørpe og produkt ved hjelp av et termisk kamera. Temperaturmålinger i modellprodukt bekreftet en langt større kjølekapasitet ved bruk av issørpe sammenlignet med tradisjonell flak-is. Issørpe ga raskere nedkjøling enn flak-is uansett håndtering, men sammenligning av temperaturmålinger og varmeovergangstall viste at hvordan issørpen benyttes er avgjørende. Lav iskonsentrasjon medførte temperaturstigning i beholderen og modellproduktene nådde ikke kjernetemperaturer under 0 °C. Høyere iskonsentrasjon ga raskere nedkjøling og lavere slutttemperatur. Luftinnsprøyting i issørpen for å skape omrøring viste seg å gi en vesentlig økning i varmeovergangstallet. I tillegg opprettholdes issørpens lave temperatur også inne ved produktoverflaten, i motsetning til de øvrige kjøletilfellene hvor denne temperaturen opplevde en stigning etter forsøksoppstart, for så å etterhvert gå ned igjen. Konseptet for lufttilførsel i issørpen bør derfor jobbes videre med, ettersom det har en potensiell gevinst i produktkvalitet som følge av raskere nedkjøling og konstant lav overflatetemperatur hos produkt uten at frysing oppstår.</p>
193

Air reversing CO2 heat pumps

Andreassen, Hanne Elisabeth Bø January 2010 (has links)
<p>CO2 is an environmentally friendly refrigerant that has a no global warming potential when used as refrigerant. The current refrigerants used for air conditioning in public transport are chemical components, and have a high global warming impact. The possibility of replacing the conventional refrigerants by CO2 is investigated for various parts of the transport sector. A possible CO2system for heating and cooling for public transport has been modeled and simulated. This system is a turntable prototype which is reversing the airflows to provide either cooling or heating. It has two gascoolers and two evaporators for separate treatment of ambient and recycled air. The plate is rotated 180˚ to switch from heating to cooling mode. CO2 has large potential for expansion work, due to the normally large throttling losses for high ambient temperatures. An ejector has therefore been implemented in the heat pump circuit. The turntable prototype is modeled by the simulation tool Modelica, and it is investigated how this ejector system adjusts to varying ambient conditions and power demand. Weather data from the climate database Meteonorm was used as a basis for calculation of heating and cooling demand for a train compartment in five different cities, covering a variety of climates. A case study was performed based on an occupancy rate profile and operative hours of the heat pump for the compartment. Simulations were performed of the air reversing heat pump based on the heating -and cooling demand calculations for the five cities. The COP values obtained are very positive, and they are in general higher for heating than cooling mode. The COP is depending on the load, and decreases with reduced occupancy rate. For cooling mode the COP ranged from 3.1 to 6. For heating mode it ranged from 8.2 to 2.8. With the occupancy rate chosen, the annual energy savings is about 80% for all the 5 cities of the study. The fan work of the heat pumps was also included for 4 different operating modes. This reduced the total COP by between 10 to 40%, depending on heating and cooling power requirement and ambient conditions. The fin and tube gas coolers that were used in the Modelica model were compared to a set of MPE gas coolers. The total mass of the heat exchangers was reduced by 50%. One would still have to weigh the reduced mass and increased LCCP performance against the increased investment cost of the MPE heat exchangers.</p>
194

Investment Analysis with the EMPS Model with Emphasis on Central Norway

Beurling, Steinar January 2010 (has links)
Central Norway has had a significant growth in power consumption over the last few years, and demand is expected to rise. Due to lack of investment in sufficient generation and transmission capacity, Central Norway is expected to have a significant power deficit in an average year and severe deficits in dry years. This thesis investigates the power situation in Central Norway by using the EMPS model developed at SINTEF Energy Research combined with newly developed investment functionality. The thesis has studied the EMPS model and developed new functionality for the investment model in order to do more precise investment analyses. Simulations on optimal investments in different cases concerning increased load and subsidies on wind power investments have been done as well. The simulations show that the power situation Central Norway is close to critical and that investments must be executed to avoid high risk of rationing in a future situation with higher demand. The investment analysis based on the present state show that the proposed transmission investments on Nea--Järpströmmen and Ørskog--Fardal are sensible and very useful for the power situation in Central Norway. Simulations show that subsidies to encourage wind power development might cause more uncertain and variable prices due to lower price incentives to build new transmission capacity. Simulations also show that large wind power investments will have a substantial impact on how hydro power is utilized in Norway. The investment functionality has shown a good capability to obtain sensible solutions that give less price variation throughout the system and reasonable price distributions as long as the investments are small enough to not have substantial impact on hydro power utilization.
195

Investment Analysis with the EMPS Model with Emphasis on Transmission Capacity Increase to other Power Systems

Bakken, Mats Elvethon January 2010 (has links)
The EMPS model is a fundatmental model for optimizing and simulation of power systems with substantial amounts of hydro power, developed by SINTEF Energy Research. Recently SINTEF Energy Research developed investment functionality making it possible to run optimal investment analysis of thermal power, wind power and transmission capacities.The purpose of this thesis is to study and learn how to use both the EMPS and the newly developed investment model. The investment model is to be improved to use price segments instead of weekly average prices when calculating the profits and to implement the option to set a maximum capacity. Furthermore simplistic models of Germany and the Netherlands are to be constructed to be able to use the investment model to find the optimal transmission capacity between Norway and the Netherlands.The investment analysis resulted in an investment of 6000 MW in transmission capacity between Norway and the Netherlands. 6000 MW was the limit due to limitations in the grid from "Sørlandet" to the other parts of Norway. However the way the Netherlands are modelled do not take into account that the prices in the Netherlands also would change as a function of this capacity increase so it is fair to say that the invested capacity is too large. The investment analysis does show that an investment should be made as it is very profitable. For instance would an investment in the region of 1200 MW result in the full investment costs beeing payed back within 3 years of installation according to the investment analysis. The investment functionality is a program that is quick and easy to use. It provides the user a way to specify a lot of different investment alternatives. The program can be used to see the optimal investment in one or more investment alternatives and it also shows the impact they possibly have on each other. The program saves the user a lot of time as the user no longer has to manually add the investments into the EMPS model. There are however still a few errors that have to be fixed in the program and new features that could be added to improve the results, such as non-linear investment costs.
196

Gas cleaning with Granular Filters

Natvig, Ingunn Roald January 2007 (has links)
<p>The panel bed filter (PBF) is a granular filter patented by A. M. Squires in the late sixties. PBFs consist of louvers with stationary, granular beds. Dust is deposited in the top layers and on the bed surface when gas flows through. PBFs are resistant to high temperatures, variations in the gas flow and hot particles. The filter is cleaned by releasing a pressure pulse in the opposite direction of the bulk flow (a puff back pulse). A new louver geometry patented by A. M. Squires is the filter tray louvers. The new design is believed to reduce the pressure drop and the number of louvers, and to make the filter more compact. We have designed and built a laboratory scale PBF with filter tray louvers based on the patent. Experiments with the prototype show that the new louver can be cleaned with a puff back pulse. A PBF system for a hypothetical biomass combustion plant has been designed. The heat from the flue gas will be used for district heating. The proposed PBF system design consists of double-sided modules with 46 filter tray louvers on top of each other. Five modules are mounted together in module columns, sharing the same clean gas duct and puff back pipe. The granular medium chosen is Sintered Bauxite 20/40 (SB). The module columns are placed in an enveloping house. SB and dust fall into bins in the bottom of the enveloping house during puff back cleaning. A vacuum pneumatic conveying system brings the dust and SB to the top of the filter. Dust and SB are separated in a sieve. Dust is deposited, and SB is transported back to the modules. NTNU is currently involved in the BioSOFC project. The objective of this project is to increase efficiency in energy production from biomass by using producer gas from a biomass gasification plant in a Solid Oxide Fuel Cell. Field tests will be performed at a plant in Güssing, Austria. A PBF will be used for gas filtration. The operating temperature will be 500 °C to avoid tar condensation. We have performed heating experiments on the BioSOFC filter system. The results were not satisfactory, as the temperature in the filter ranged from 384 to 625 °C. The filter system was due to be shipped, and new tests could not be performed. This work proposes that modifications to the heating cable circuits are made, and new heating tests are performed before the field testing.</p>
197

Modeling of a Microbial Fuel Cell

Calder, Michael Alexander January 2007 (has links)
<p>It is clear that society worldwide must immediately begin to mitigate its environmental damage in order to sustain life on Earth. In this regard, researchers all over the global are exploring new energy efficient alternatives to power everything from cars to cell phones. The following brief describes research conducted on Microbial Fuel Cells (MFC) and its ability to utilize bacteria to produce electricity from biological masses for low energy consumer products While structurally the MFC is very similar to a Conventional Fuel Cell, the two systems have inherent differences that change the reactions, inputs and energy output. Currently, we have found MFC to produce only a fraction of the power (~1A/cm2 vs ~1mA/ cm2 ) produced by a conventional CFC, however, its versatility keeps MFCs as a promising fuel source potential. A Multi-disciplinary University Research Initiative has organized to examine and test the potential of MFC. The team is divided into three teams based on industry domains and expertise: microbiology, chemistry and electrochemistry, and engineering and modeling. The followin master thesis research was part of the engineering and modeling team lead by Professor Ronney XX. The goal of our team was to construct a first version of a computational model simulating the MFC system. The computational model is be based on combustion kinetics and a diffusion-reaction system theories, and is manipulated to immatate a biological system that can maximize its energy output. The model has been constructed in Fluent. Starting out with a 1D model, and consequently moved on to a 2D version. The final model is a diffusion-reaction system with 6 different species, a 3-step reaction, including a bacterial anodic oxidation, a cathodic reduction, and a possibility of taking into account a counteracting anodic reaction for oxygen crossover through the membrane. While the model has been proven to correlate well with lab tested experimental results, the team will continue to identify conditions to maximize the MFC’s efficiency and energy output.</p>
198

Behovsstyrt ventilasjon i yrkesbygg : Konsekvenser for energibruk og inneklima

Olufsen, Andreas Opsahl January 2007 (has links)
<p>There were three main objectives in this thesis. The first objective was to find the utility patent of a building at the Norwegian University of Science & Technology. This was performed using logged data from infrared motion sensor readings over a period of twenty nine days. Main finding suggests an average presence during working hours (8 AM – 3 PM) of 57 %. A utility patent developed and based on the twenty nine days of logged data shows the expected occupancy at any time during a normal working day. The second objective, sensor accuracy, is estimated based on comparison of logged data and manual registrations over two days. This information formed a basis for discussion of how well the infrared motion sensors performed. In this building, the conclusion is that ceiling mounted sensors perform better than wall mounted sensors. The third objective is to develop a computer model of the building and simulate it with two different ventilation systems. One simulation is of a CAV system, while the other is a VAV system that is able to adjust its minimum OA requirements according to the registered utility patent found in the first objective of the thesis. The computer model was developed with DOE2. The VAV system proved to perform far more efficient than the CAV system for a one year simulation. The hot water demand was reduced by 51%, cold water by 57%, and fan energy dropped by 76%.</p>
199

Vertical Stratification in a Ventilated Space : Comparison of Theoretical Predictions to Experimental Results from a Water Scale Model

Myrtrøen, Ole-Jørgen Feiring January 2007 (has links)
<p>This study investigates the behaviour of a vertically distributed source of buoyancy on the vertical stratification in a ventilated space, an important factor for determining indoor comfort when using displacement ventilation. A new theory describing the behaviour of this buoyancy source in a ventilated space was presented previous to this work, but experimental results were required in order to validate the theoretical and numerical modelling. The behaviour of this source of buoyancy on the stratification in a ventilated space is studied for a mechanically ventilated at steady-state and for a linearly stratified environment using salt water in a water scale model. The stratifications were measured using a traversing conductivity probe and then compared to theoretical predictions by numerically solving the plume equations for the new theory in Fortran. High quality measurements were produced, showing excellent repeatability for stratification measurements at steady-state with deviations of less than 1 %. Moreover, the linear stratifications had linear best fits up to R2 = 0.999 by using the double-bucket method. The theoretical predictions of the influence of the vertically distributed source correlate quantitatively with the mechanically ventilated experiments, showing good agreement to the strength of the ambient stratification, the position of the first front and the ventilation flow rate. The experimental results for the determination of the height of a horizontal intrusion of fluid into the linearly stratified environment were severely affected by the occurrence of gravity current at the ceiling of the ventilated space and comparisons to the new theory was not successful because of this. A two-layer stratification is observed where the upper layer had a weakly stratified density profile, instead of the multi-layer stratification predicted by previous researchers in their theoretical model. This discrepancy is due to smoothing and vertical turbulent mixing in the water scale model. It is recommended that the characteristic of the membrane that is used in the water scale model is investigated in relation to the gravity currents for future research.</p>
200

Energy System for LNG Plant Based on Imported Power

Bomstad, Fredrik, Nordland, Kjetil January 2009 (has links)
<p>It has been proposed to supply heat and power to Snøhvit Train II (STII) from onsite heat generation based on natural gas and power import from the power grid. Without carbon capture and storage, greenhouse gas (GHG) emissions from the combustion of natural gas in furnaces make a considerable contribution to the global warming potential (GWP) of this energy system. Depending on the interpretation of marginal power consumption, the power import also contributes to and increases this system’s GWP. A recent SINTEF report claimed that European CO2 emissions are reduced with additional renewable power production in Norway, and it has been suggested to invest in wind power in order to completely offset the GWP of the STII energy system. This paper provides investment analyses for the proposed energy system. A scenario approach was used, with six different scenarios covering two dimensions. The first dimension is the origin of the grid power, with three different interpretations of marginal power representing Cases A, B and C. The other dimension is the STII train size, with two different sizes being analyzed, namely 50 % and 70 % of the Snøhvit Train I design capacity. The proposed energy system was also analyzed with respect to security of supply. Improved reliability and transmission capacity, together with a stable, positive power balance, make a good foundation for security of power supply. The power demand of the two train sizes was estimated to 101 MW and 141 MW, with corresponding heat demand of 94 MW and 131 MW. These estimates were based on a combination of HYSYS simulations and data provided by StatoilHydro (SH), and provided input for both the GWP analysis and the investment analysis. The GWP impact of each scenario determined the share of power import from the grid that would have to be replaced by energy harnessed from wind. The applied capacity factor was 39.6 %, and the rated wind power requirement for the six different scenarios ranged from 101 MW for the A.50 scenario to 257 MW for the C.70 scenario. The break even (BE) energy prices were calculated for each of the six scenarios analyzed. If the power consumption is based solely on power import, with zero StatoilHydro (SH) share of grid reinforcements and no SH development of wind power, the BE power price would be 466 NOK/MWh. The inclusion of wind power development as part of the investment will increase the BE power price by up to 33 NOK/MWh. The additional SH share of grid reinforcement will add 86 NOK/MWh for the 50 % STII or 62 NOK/MWh for the 70 % STII. It was shown that the investment in wind power to offset the GWP of the energy system might also be a reasonable way of hedging against increases in the market price of electricity. It was found that the share of STII power demand that is provided by wind power is one of the parameters that have the least influence on the project’s net present value (NPV). A high share of wind power is an inexpensive investment in improving reputation and predictability of energy price.</p>

Page generated in 0.0356 seconds