Spelling suggestions: "subject:"mild fact globules membrane (MFGM)"" "subject:"mild fact globular membrane (MFGM)""
1 |
The Effects of Microfluidization and Homogenization on the Composition and Structure of Liposomal Aggregates from Whey Buttermilk and Commercial ButtermilkNguyen, Tracey Mai T 01 August 2013 (has links)
Milk derived ingredients from the production of cheese and butter can be used as vehicles for nutrients. Buttermilk is a nutritious product of milk that comes from the churning of cream into butter. One of the advantages of buttermilk is that it is enriched in milk fat globule components, such as phospholipids and forms emulsions with fat when treated with high shear. The objective of this work was to explore the effects of shear on regular buttermilk and whey buttermilk in terms of liposomal aggregate size and chemical composition. The effects of microfluidization at 2000 psi and homogenization at 2000 psi/500 psi on the particle size distribution of liposomal aggregates between whey buttermilk (WBM) at pH 4.6 and 6.8 and commercial sweet buttermilk (SBM) at pH 4.60 were compared with whey protein isolate (WPI) at pH 4.6. At pH 6.80, WPI and SBM are too soluble in water to measure particle size but WBM is not as soluble. From this investigation, the mean particle diameter of the SBM aggregates at pH 4.6 decreased after the first pass through the microfluidizer and the same is true, after homogenization. SBM aggregates at pH 4.6 had a significantly larger mean particle diameter before treatments in both shear processes compared to WPI at pH 4.6 and WBM at pH 4.6 and WBM at pH 6.8 (p < 0.0001). WPI at pH 4.6 and WBM at both pH showed no significant differences in their mean particle size in both homogenized and microfluidized treatments. WPI and SBM samples resulted in significant particle diameter differences vi from before to after homogenizing at pH 4.6. SBM at pH 4.6 had significantly larger average particle diameter than WBM at pH 4.6 (p < 0.0002), WPI at pH 4.6 (p < 0.0002) and WBM at pH 6.8 (p < 0.0045) before microfluidization at pass 0.
WBM and WPI across all treatments showed very similar tendencies in small particle size attributes and some similarities in protein composition. In addition, the small aggregate size of WBM is suggested to be influenced by the presence of phospholipids and thus, creating significantly smaller mean particles compared to SBM even before inducing high shear. In contrast, treated and untreated SBM differed from WBM in phospholipid composition in both homogenization and microfluidization techniques. WBM samples contained more phospholipids than SBM, whereas WPI samples contained very low concentrations of phospholipids. Through HPLC analysis, WPI, SBM, and WBM showed different profiling of the phospholipid classes. These differences may be due structural changes of the aggregates from shearing, initial thermal treatments or hydrophobic and/or protein-phospholipid interactions between the aggregates. SBM samples also exhibited different protein profiling than WBM and WPI samples. This study suggests that high shear and presence of phospholipids impact the size distribution of liposomal aggregates through structural alterations. The aggregates can be utilized as a novel ingredient and in the processing of dairy foods to deliver nutrition.
|
2 |
Effects of Milk Processing on the Milk Fat Globule Membrane ConstituentsElías-Argote, Xiomara E 01 July 2011 (has links)
ABSTRACT
Effects of Milk Processing on the Milk Fat Globule Membrane Constituents
Xiomara E. Elías-Argote
The milk fat globule membrane (MFGM) is avidly studied by many groups of scientists around the world due to its unprecedented nutritional and functional properties; however, limited research has been performed on the effects of milk processing on the chemical changes of the MFGM. Thus, this study highlights the changes that lipids and proteins undergo from the time milk leaves cow’s udders. Cooling (4 °C) was included along with subsequent pasteurization by different traditional thermal processes and cold pasteurization by pulse light ultra violet treatment. Cooling milk to 4 °C had a measureable effect on the MFGM composition, resulting in protein alterations, particularly to butyrophilin and adipophilin. Thermal treatments disturbed the native structures of molecules and increased the adsorption of milk and whey proteins on the globules, especially a-lactalbumin and b-lactoglobulin. As the heat intensity increased, the aggregation of fat globules became more pronounced due to protein interactions. Intrinsic MFGM proteins also varied in relative abundance during the processing steps. The concentrations of polar lipids did not change during processing, with the exception of phosphatidylserine, which decreased during the cooling and thermal treatments. Cold pasteurization (UV treatment) had a minimal effect on fat globules and MFGM proteins. Since the MFGM promises to deliver nutritional effects and more when included in food products, currently HTST pasteurization was shown to be the best method to process milk and obtain MFGM isolates for further supplementation.
|
3 |
Dietary Milk Fat Globule Membrane Reduces the Incidence of Aberrant Crypt Foci in Fischer-344 Rats and Provides Protections Against Gastrointestinal Stress in Mice Treated with LipopolysaccharideSnow, Dallin R. 01 December 2010 (has links)
Milk fat globule membrane surrounds the fat droplets of milk. It is a biopolymer containing primarily membrane glycoproteins and polar lipids which contribute to its properties as a possible neutraceutical. The aims of the studies were to determine if dietary milk fat globule membrane: (1) confers protection against colon carcinogenesis; and (2) promotes gut mucosal integrity while decreasing inflammation compared to diets containing corn oil or anhydrous milk fat.
Aim 1. Three dietary treatments differing only in the fat source were formulated: (1) AIN-76A, corn oil; (2) AIN-76A, anhydrous milk fat; and (3) AIN-76A, 50% milk fat globule membrane, 50% anhydrous milk fat. Each diet was formulated to contain 50 g/kg diet of fat and to be identical in macro and micro nutrient content. To assess protection against colon carcinogenesis, male, weanling Fischer-344 rats were randomly assigned to one of the three dietary treatments. Animals were injected with 1,2-dimethylhydrazine once per week at weeks 3 and 4. After 13 weeks animals were sacrificed, colons were removed, and aberrant crypt foci were counted by microscopy.
Rats fed the milk fat globule membrane diet (n = 16) had significantly fewer aberrant crypt foci (20.9 ± 5.7) compared to rats fed corn oil (n = 17) or anhydrous milk fat (n = 16) diets (31.3 ± 9.5 and 29.8 ± 11.4 respectively; P < 0.05).
Aim 2. Male BALB/c mice were randomly assigned to one of two diets: AIN- 76A, corn oil or AIN-76A, 50% milk fat globule membrane, 50% anhydrous milk fat. After 5 weeks mice were injected with saline vehicle control or lipopolysaccharide and gavaged with dextran-FITC. To assess gut mucosal integrity and inflammation, serum samples were assayed for dextran-FITC 24 and 48 hours after gavage, and a panel of 16 cytokine concentrations was analyzed.
Serum concentrations of IL-6, IL-10, IL-17, MCP-1, IFNγ, and TNFα decreased and gut permeability decreased 45% in lipopolysaccharide challenged mice fed milk fat globule membrane diet compared to control diet at 24 hours (P < 0.05).
Overall, the results of these aims suggest that diets containing milk fat globule membrane are protective against colon carcinogenesis, inhibit the inflammatory response, and protect against gastrointestinal stress.
|
Page generated in 0.0798 seconds