• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Precipitation flow in a confined geometry: Mixing, fingering, and deposition

Shahsavar, Negar January 2024 (has links)
Reactive flow in porous media, leading to solid precipitation and deposition, is a fundamental process with widespread implications across various fields, such as carbonate mineralization during CO2 sequestration process. Despite the extensive research on the precipitation flow, the physical mechanisms behind the coupling between the hydrodynamics and reaction are less well-understood. This thesis investigates the complex interplay between fluid flow and a chemical reaction (A+B=C) that triggers precipitation and deposition in a Hele-Shaw cell with a gap thickness much smaller than the ones used in the past. We find that both electrostatic and hydrodynamic forces influence the onset of fingering. The results reveal that precipitation-induced fingering plays a significant role in altering mixing dynamics and precipitation rate. A model is developed, incorporating a more realistic rheology model and a first-order deposition term into an advection-diffusion-reaction framework, to comprehensively analyze the impact of critical parameters such as injection rate and initial reactant concentrations on hydrodynamic instability resulting from precipitation and deposition. Validation against experimental data demonstrates the model's capability to capture diverse precipitation patterns observed under varying experimental conditions accurately. Additionally, the results highlight the crucial role of the deposition term in accurately predicting the temporal evolution of total solid content observed in the experiments. Furthermore, the thesis explores the influence of porous media heterogeneity on calcium carbonate mineralization dynamics in a 2D radial porous system. Using a flow cell with a bimodal pore throat size distribution, the study investigates the temporal evolution of the mixing front, total precipitation amount, and spatial distribution of deposited particles under different injection rates and reactant concentrations. Findings reveal the formation of stable mixing fronts at higher injection rates, driven by the creation of large aggregates, and demonstrate enhanced precipitation in porous media dominated by advection. Conversely, in diffusion-dominated conditions, the precipitation rate transitions to scaling behaviors observed in a homogeneous media. The experimental observations elucidate the deposition of large aggregates in low-permeability regions, leading to significant alterations in cell permeability and porosity. / Thesis / Doctor of Philosophy (PhD)
2

Geochemical Modeling of CO2 Sequestration in Dolomitic Limestone Aquifers

Thomas, Mark W. 25 October 2010 (has links)
Geologic sequestration of carbon dioxide (CO 2) in a deep, saline aquifer is being proposed for a power-generating facility in Florida as a method to mitigate contribution to global climate change from greenhouse gas (GHG) emissions. The proposed repository is a brine-saturated, dolomitic-limestone aquifer with anhydrite inclusions contained within the Cedar Keys/Lawson formations of Central Florida. Thermodynamic modeling is used to investigate the geochemical equilibrium reactions for the minerals calcite, dolomite, and gypsum with 28 aqueous species for the purpose of determining the sensitivity of mineral precipitation and dissolution to the temperature and pressure of the aquifer and the salinity and initial pH of the brine. The use of different theories for estimating CO2 fugacity, solubility in brine, and chemical activity is demonstrated to have insignificant effects on the predicted results. Nine different combinations of thermodynamic models predict that the geochemical response to CO2 injection is calcite and dolomite dissolution and gypsum precipitation, with good agreement among the quantities estimated. In all cases, CO2 storage through solubility trapping is demonstrated to be a likely process, while storage through mineral trapping is predicted to not occur. Over the range of values examined, it is found that net mineral dissolution and precipitation is relatively sensitive to temperature and salinity, insensitive to CO2 injection pressure and initial pH, and significant changes to porosity will not occur.
3

GRAVITY DRIVEN CHEMICAL DYNAMICS IN FRACTURES

Zhenyu Xu (8525205) 16 December 2020 (has links)
<div>Global warming is considered to result from excessive emission of CO<sub>2</sub> caused by human activity. The security of long term CO<sub>2</sub> capture and sequestration on the subsurface depends on the integrity of caprocks. Natural and engineered subsurface activities can generate fractures in caprocks that can lead to CO<sub>2</sub> leakage. Reactive fluids that flow through a fracture may seal a fracture through mineral precipitation or open a fracture through dissolution. It is extremely useful to CO<sub>2</sub> storage to understand the behavior of reactive fluids that generates mineral precipitation that can seal a fracture. Experiments on non-reactive and reactive fluid mixing were performed to explore gravity-driven chemical dynamics that control the mixing and spatial distribution of mineral precipitates. Fracture inclination, fracture apertures, fluid pumping rates, and density contrasts between fluids were studied for their effects on fluid mixing. From non-reactive fluid mixing experiments, a less dense fluid was found to be confined to a narrow path (runlet) by the denser fluid under the influence of gravity. Fracture inclination angle affected the shape of the less dense fluid runlet. As the angle of inclination decreased, the area of the less dense runlet increased. Improved mixing and a potentially larger area of precipitation formation will occur during reactive fluid mixing when the fracture plane is perpendicular to gravity. Fracture aperture affected the time evolution of the mixing of the fluids, while pumping rate affected fluid mixing by controlling the relative velocities between the two fluids. The fact that the spatial distribution of the two fluids, instead of the fracture roughness, dominated the fluid mixing sheds light on the potential behaviors of reactive fluids mixing in fractures. The location for the majority of precipitation formation and the transport of precipitates can be accordingly predicted from knowledge of the properties of the two reactive fluids and the orientation of the fracture.</div><div>From a small study on wave propagation across fractures with precipitates, simulation results showed that the impedance difference between the matrix material and the precipitate affects the transmitted signal amplitude. Both the aperture and fraction of aperture filled with precipitates affect signal amplitude.</div><div><br></div>
4

Modeling single-phase flow and solute transport across scales

Mehmani, Yashar 16 February 2015 (has links)
Flow and transport phenomena in the subsurface often span a wide range of length (nanometers to kilometers) and time (nanoseconds to years) scales, and frequently arise in applications of CO₂ sequestration, pollutant transport, and near-well acid stimulation. Reliable field-scale predictions depend on our predictive capacity at each individual scale as well as our ability to accurately propagate information across scales. Pore-scale modeling (coupled with experiments) has assumed an important role in improving our fundamental understanding at the small scale, and is frequently used to inform/guide modeling efforts at larger scales. Among the various methods, there often exists a trade-off between computational efficiency/simplicity and accuracy. While high-resolution methods are very accurate, they are computationally limited to relatively small domains. Since macroscopic properties of a porous medium are statistically representative only when sample sizes are sufficiently large, simple and efficient pore-scale methods are more attractive. In this work, two Eulerian pore-network models for simulating single-phase flow and solute transport are developed. The models focus on capturing two key pore-level mechanisms: a) partial mixing within pores (large void volumes), and b) shear dispersion within throats (narrow constrictions connecting the pores), which are shown to have a substantial impact on transverse and longitudinal dispersion coefficients at the macro scale. The models are verified with high-resolution pore-scale methods and validated against micromodel experiments as well as experimental data from the literature. Studies regarding the significance of different pore-level mixing assumptions (perfect mixing vs. partial mixing) in disordered media, as well as the predictive capacity of network modeling as a whole for ordered media are conducted. A mortar domain decomposition framework is additionally developed, under which efficient and accurate simulations on even larger and highly heterogeneous pore-scale domains are feasible. The mortar methods are verified and parallel scalability is demonstrated. It is shown that they can be used as “hybrid” methods for coupling localized pore-scale inclusions to a surrounding continuum (when insufficient scale separation exists). The framework further permits multi-model simulations within the same computational domain. An application of the methods studying “emergent” behavior during calcite precipitation in the context of geologic CO₂ sequestration is provided. / text

Page generated in 0.0958 seconds