1 |
Missing Data Treatments at the Second Level of Hierarchical Linear ModelsSt. Clair, Suzanne W. 08 1900 (has links)
The current study evaluated the performance of traditional versus modern MDTs in the estimation of fixed-effects and variance components for data missing at the second level of an hierarchical linear model (HLM) model across 24 different study conditions. Variables manipulated in the analysis included, (a) number of Level-2 variables with missing data, (b) percentage of missing data, and (c) Level-2 sample size. Listwise deletion outperformed all other methods across all study conditions in the estimation of both fixed-effects and variance components. The model-based procedures evaluated, EM and MI, outperformed the other traditional MDTs, mean and group mean substitution, in the estimation of the variance components, outperforming mean substitution in the estimation of the fixed-effects as well. Group mean substitution performed well in the estimation of the fixed-effects, but poorly in the estimation of the variance components. Data in the current study were modeled as missing completely at random (MCAR). Further research is suggested to compare the performance of model-based versus traditional MDTs, specifically listwise deletion, when data are missing at random (MAR), a condition that is more likely to occur in practical research settings.
|
2 |
Missing Data Treatments in Multilevel Latent Growth Model: A Monte Carlo Simulation StudyJiang, Hui 25 September 2014 (has links)
No description available.
|
Page generated in 0.1248 seconds