• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 832
  • 262
  • 174
  • 92
  • 53
  • 31
  • 15
  • 15
  • 12
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • Tagged with
  • 1774
  • 253
  • 228
  • 211
  • 186
  • 179
  • 164
  • 156
  • 153
  • 146
  • 121
  • 120
  • 109
  • 108
  • 96
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

ALTERATIONS OF MITOCHONDRIAL BIOGENESIS AND ALTERATIONS OF MITOCHONDRIAL ANTIOXIDANT DEFENSE IN FRIEDREICH’S ATAXIA

Marmolino, Daniele 25 January 2011 (has links)
Friedreich’s ataxia (FRDA) is an autosomal recessive inherited disorder affecting approximately 1 every 40,000 individuals in Western Europe, is characterized by progressive gait and limb ataxia, dysarthria, areflexia, loss of vibratory and position sense, and a progressive weakness of central origin. Additional features particularly include an hypertrophic cardiomyopathy that can cause premature death. A large GAA repeat expansion in the first intron of the FXN gene is the most common mutation underlying FRDA. Patients show severely reduced levels of the FXN-encoded mitochondrial protein frataxin. Frataxin function is not yet completely elucidated. In frataxin deficiency conditions abnormalities of iron metabolism occur: decreased activities of iron-sulfur cluster (ISC) containing proteins, accumulation of iron in mitochondria and depletion in the cytosol, enhanced cellular iron uptake, and, in some models, reduced heme synthesis. Evidence of oxidative stress has also been found in most though not all models of frataxin deficiency. Accordingly, yfh1-deficient yeast and cells from FRDA patients are highly sensitive to oxidants. Respiratory chain dysfunction further aggravate oxidative stress by increasing leakage of electrons and the formation of superoxide. Frataxin deficient cells not only generate more free radicals, but, they also show a reduced ability to mobilize antioxidant defenses, in particular to induce superoxide dismutase 2 (SOD2). Peroxisome proliferator-activated receptor (PPAR) isoform-gamma play a key role in numerous cellular functions and is a key regulator of mitochondrial biogenesis and of the ROS metabolism. Recruitment of the PPAR coactivator-1a (PGC-1a) mediates many effects of the PPAR-γ activation. In a first work we assessed the potential beneficial effects of a potent PPAR-gamma agonist on frataxin expression in primary fibroblasts from healthy controls and FRDA patients, and Neuroblastoma cells. We used the APAF molecule (1-0-hexadecyl-2-azelaoyl-sn-glycero-3-phosphocoline; C33H66NO9P). Our results show that this compound is able to increase frataxin amount both at transcriptional and post-transcriptional level. At a dose of 20µM frataxin mRNA significantly increases in both controls (p=0.03) and FRDA patients (p=0.002) fibroblasts (1). The finding was confirmed in Neuroblastoma cells (p=0.042). According to previous publications APAF, as others PPAR-gamma agonists is able to up-regulate PGC-1a transcription. In a second part of the study we investigate the role of the PPAR-gamma/PGC-1a pathway in the pathogenesis of FRDA. We performed a microarray analysis of heart and skeletal muscle in a mouse model of frataxin deficiency and we found molecular evidence of increased lipogenesis in skeletal muscle and alteration of fiber-type composition in heart, consistent with insulin resistance and cardiomyopathy, respectively. Since the PPAR-gamma pathway is known to regulate both processes, we hypothesized that dysregulation of this pathway could play a key role in frataxin deficiency. We confirmed this by showing a coordinate dysregulation of Pgc1a and the transcription factor Srebp1 in cellular and animal models of frataxin deficiency, and in cells from FRDA patients, who have marked insulin resistance. Particularly, PGC-1a was found significantly reduced (2) in primary fibroblasts and lymphocytes from FRDA patients (p<0.05). Furthermore, PGC-1a mRNA levels strongly correlate with frataxin relative mRNA levels (r2=0.9, p<0.001). According to this observation, in C2C12 myoblasts, PGC-1a and a reporter gene under the control of the PGC-1a promoter are rapidly down-regulated (p<0.05) when frataxin expression is inhibited by an shRNA in vitro. To further investigate this relation, we then generate PGC-1a deficient fibroblasts cells using a specific siRNA; at 72 hours of transfection frataxin was found down-regulate (p<0.05) in control cells. Taken together those data indicate that some mechanism directly links an early effect of frataxin deficiency with reduced PGC-1a transcription in this cell type, and presumably in other cells that also down-regulate PGC-1α when frataxin levels are low. Finally, since PGC-1a has also emerged as a key factor in the induction of many antioxidant programs in response to oxidative stress, both in vivo and in vitro, in particular in neurons, we tested whether the PGC-1a down-regulation occurring in FRDA cells could be in part responsible for the blunted antioxidant response observed in frataxin deficiency. Using primary fibroblasts from FRDA patients we found reduced SOD2 levels (p<0.05), according to PGC1 and frataxin reduced levels. Our finding confirm previous publications showing that PGC-1a directly regulate SOD2 levels in vitro and in vivo. We then tested the response to oxidative stress induced by the addition of hydrogen peroxide (H2O2) at different time and doses. Our data show that H2O2 directly increase PGC-1a and SOD2 levels (p<0.01 and p<0.05) in control cells; no effect was observed in FRDA cells, suggesting a lack in the activation of this response. Moreover, PGC-1α direct silencing, using a specific siRNA, in control fibroblasts led to a similar loss of SOD2 response (p<0.001) to oxidative stress as observed in FRDA fibroblasts, confirming its crucial role in this response (3). We then measured the same parameters after pharmacological manipulations of PGC-1a. PGC-1a activation with the PPAR agonist (Pioglitazone) or with a cAMP-dependent protein kinase (AMPK) agonist (AICAR) restored normal SOD2 induction (4) in FRDA cells (p<0.01). In vivo treatment of the KIKO mice (35-40% of wiled-type frataxin) with Pioglitazone significantly up-regulate SOD2 (5) in cerebellum (p<0.01) and spinal cord (p<0.05), two primary affected tissues in patients. The search for experimental drugs increasing the amount of frataxin is a very active and timely area of investigation. In cellular and in animal model systems, the replacement of frataxin function seems to alleviate the symptoms or completely reverts the phenotype. Therefore, drugs that are able to increase directly the amount of frataxin, at least up to the level of an asymptomatic carrier, are attractive candidates for new approaches to the therapy of FRDA. Our findings show (1) that a potent PPAR-gamma agonists can increase frataxin expression. We do also show a regulatory loop between frataxin and PGC-1a. Thus, we suggest that this loop could play a critical role in the pathogenesis of the disease and breaking this loop could help to slow down the pathological phenotype observed in FRDA patients. Particularly, PGC-1α down-regulation (3) is likely to contribute to the blunted antioxidant response observed in cells from FRDA patients. This response can be restored by AMPK and PPAR agonists in vitro (4) and in vivo, as shown by Pioglitazone treatment (5) in a mouse model for the disease. To conclude, our study provide evidences that PPAR-gamma agonists are a potential treatment for Friedreich’s ataxia, consisting with their action on both mitochondrial biogenesis and oxidative stress defenses.
242

Dual targeting of glutathione reductase to mitochondria and chloroplasts

Rudhe, Charlotta January 2005 (has links)
As a consequence of the presence of both mitochondria and chloroplasts in plant cells there is a higher sorting requirement in a plant cell than that in a non-plant cell. Reflecting this, protein import to mitochondria and chloroplasts has been shown to be highly specific. However, there is a group of proteins which are encoded by a single gene in the nucleus, translated in the cytosol and targeted to both mitochondria and chloroplasts. These proteins are referred to as dual targeted proteins. The first protein shown to be dual targeted was pea glutathione reductase (GR). The focus of this thesis is the targeting properties of the dual targeted protein glutathione reductase. In order to overcome the limitations with traditional in vitro import systems we have developed an import system for simultaneous import of precursor proteins into mitochondria and chloroplasts (dual import system). The chloroplastic precursor of the small subunit of ribulose bisphosphate carboxylase/oxygenase (SSU) was mis-targeted to pea mitochondria in a single import system, but was imported only into chloroplasts in the dual system. The dual GR reductase precursor was targeted to both mitochondria and chloroplasts in both the single and dual import system. We have investigated the targeting and processing properties of the GR targeting signal. Using N-terminal truncations we have demonstrated that the GR targeting signal has a domain organisation. Our results show that GR has evolved a dual targeting signal with the C-terminal part being sufficient for chloroplast import, the internal part required for the mitochondrial import and the N-terminal part housing a “fine-tuning” function. Furthermore, we have constructed a range of point mutations on the GR signal sequence changing positive amino acid residues and stretches of hydrophobic amino acid residues. Overall single mutations had a greater effect on mitochondrial import compared to import into chloroplasts. We have also shown that the recognition of the GR processing site differs between MPP and SPP. Single amino acid substitutions in the vicinity of the processing site clearly affected processing by MPP while processing by SPP showed low sensitivity to single mutations.
243

The Mitochondrial S7 Ribosomal Protein Gene: Impact of DNA Rearrangements on RNA Expression in Grasses

Byers, Evan 10 January 2012 (has links)
Frequent rearrangements, typically through homologous recombination in plant mitochondrial genomes often result in different upstream and downstream sequences for the same gene among a number of species. Transcription and RNA processing signals are therefore different, even among closely related plants. To evaluate the impact of DNA rearrangements on gene expression I conducted a comparative analysis of the S7 ribosomal protein gene (rps7) among a number of grasses: wheat, rice, maize, barley, rye, brome, Lolium and oats (grasses whose evolutionary divergence times range from about 5 to 60 Mya). Using circularized-RT-PCR to simultaneously map rps7 transcript termini I found that 3’ends for various RNA species are homogeneous, mapping to conserved sequences among plants. 5’ termini are more complex and can be both discrete and heterogeneous for different transcripts, both within and among plants. Genome rearrangements upstream of the rps7 start codon for some but not all species has led to plant-specific signals for both rps7 transcription and RNA processing. Termini for rps7 precursor species in wheat and Lolium are very discrete and likely use different upstream tRNAs as processing signals for end-cleavage. A number of potential stem-loop structures have also been identified at or near 5’ and 3’ termini which may function in maturation of transcript ends or provide transcript stability and protection from degradation by ribonucleases. C-to-U RNA editing of non-coding sequences, a rare event, was observed at multiple sites within the 5’ and 3’UTRs among plants. Some sites may even be developmentally regulated as CR-RT-PCR experiments were conducted using mitochondrial RNA isolated from seedlings and germinating embryos. Taken together, my observations demonstrate the frequency of upstream DNA rearrangements and the variety of signals used for expression of rps7 among grasses, providing new insights into the complexities of mRNA production in plant mitochondria.
244

The Role of Mitochondrial Alternative Oxidase in Plant-pathogen Interactions

Cvetkovska, Marina 11 December 2012 (has links)
Alternative oxidase (AOX) is a non-energy conserving branch of the mitochondrial electron transport chain (ETC) which has been hypothesized to modulate the level of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in plant mitochondria. The aim of the research presented herein is to provide direct evidence in support of this hypothesis and to explore the implications of this during plant-pathogen interactions in Nicotiana tabacum. We observed leaf levels of ROS and RNS in wild-type (Wt) tobacco and transgenic tobacco with altered AOX levels and we found that plants lacking AOX have increased levels of both NO and mitochondrial O2 - compared Wt plants. Based on the results we suggest that AOX respiration acts to reduce the generation of ROS and RNS in plant mitochondria by dampening the leak of electrons from the ETC to O2 or nitrite. We characterized multiple responses of tobacco to different pathovars of the bacterial pathogen Pseudomonas syringae. These included a compatible response associated with necrosis (pv tabaci), an incompatible response that included the hypersensitive response (HR) (pv maculicola) and an incompatible response that induced defenses (pv phaseolicola). We show that the HR is accompanied by an early mitochondrial O2 - burst prior to cell death. Also, we found iii that the appearance of HR and the appearance of the mitochondrial O2 - burst are delayed in transgenic plants lacking AOX. A similar delay is seen in transgenic plants treated with the complex III inhibitor antimycin A. In Wt plants, expression of Aox1a is suppressed during the HR response to pv maculicola despite the accumulation of signaling molecules known to induce Aox1a transcription. Also, MnSOD activity declined during the HR. We suggest that the mitochondrial ROS burst controlled by AOX and MnSOD is an important component for the induction and coordination of the HR during plant-pathogen interactions.
245

Hyperforin promotes mitochondrial function and development of oligodendrocytes

Wang, Yanlin 13 January 2010
Major depressive disorder is a common severe psychiatric disorder with unknown etiology. Recent studies show that the loss and malfunction of oligodendrocytes are closely related to the neuropathological changes in depression, which can be reversed by antidepressant treatment. St. Johns wort is an effective and safe herbal treatment for depression in several clinical trials. However, the underlying mechanism of its therapeutic effects is unclear. In this study, we evaluated the effects of hyperforin, a major active component of this herb, on the proliferation, mitochondrial function and development of oligodendrocytes. We have demonstrated that hyperforin increases mitochondrial function and prevents mitochondrial toxin-induced cytotoxicity in oligodendrocyte lineage cells. Hyperforin promotes the maturation of oligodendrocytes but does not increase the proliferation of oligodendrocyte progenitor cell line and neural stem/progenitor cells. Our findings suggest that chronic hyperforin treatment may stimulate the development and function of oligodendrocytes. These results suggest a new mechanism of hyperforin in depression treatment. Future in vitro and in vivo studies are required to further characterize the mechanisms of hyperforin.
246

The Mitochondrial S7 Ribosomal Protein Gene: Impact of DNA Rearrangements on RNA Expression in Grasses

Byers, Evan 10 January 2012 (has links)
Frequent rearrangements, typically through homologous recombination in plant mitochondrial genomes often result in different upstream and downstream sequences for the same gene among a number of species. Transcription and RNA processing signals are therefore different, even among closely related plants. To evaluate the impact of DNA rearrangements on gene expression I conducted a comparative analysis of the S7 ribosomal protein gene (rps7) among a number of grasses: wheat, rice, maize, barley, rye, brome, Lolium and oats (grasses whose evolutionary divergence times range from about 5 to 60 Mya). Using circularized-RT-PCR to simultaneously map rps7 transcript termini I found that 3’ends for various RNA species are homogeneous, mapping to conserved sequences among plants. 5’ termini are more complex and can be both discrete and heterogeneous for different transcripts, both within and among plants. Genome rearrangements upstream of the rps7 start codon for some but not all species has led to plant-specific signals for both rps7 transcription and RNA processing. Termini for rps7 precursor species in wheat and Lolium are very discrete and likely use different upstream tRNAs as processing signals for end-cleavage. A number of potential stem-loop structures have also been identified at or near 5’ and 3’ termini which may function in maturation of transcript ends or provide transcript stability and protection from degradation by ribonucleases. C-to-U RNA editing of non-coding sequences, a rare event, was observed at multiple sites within the 5’ and 3’UTRs among plants. Some sites may even be developmentally regulated as CR-RT-PCR experiments were conducted using mitochondrial RNA isolated from seedlings and germinating embryos. Taken together, my observations demonstrate the frequency of upstream DNA rearrangements and the variety of signals used for expression of rps7 among grasses, providing new insights into the complexities of mRNA production in plant mitochondria.
247

Control of the activity of the human mitochondrial transcription termination factor (mTERF) by polymerization. First evidences

Asin Cayuela, Jorge 22 May 2003 (has links)
El factor de terminación de la transcripción humano (mTERF) es una proteína codificada en el genoma nuclear, de 39 kDa, que reconoce una región de 28 pares de bases en el gen del tRNALeu(UUR) mitocondrial inmediatamente adyacente al gen del rRNA 16S. La unión de mTERF a esta región provoca terminación de la transcripción, de modo que esta proteína se considera un factor fundamental en el control de la síntesis de RNAs ribosómicos mitocondriales. A pesar de que el mTERF se une a DNA en forma monomérica, la presencia en su secuencia de tres zippers de leucina nos llevó a explorar la posibilidad de que mTERF establezca interacciones intermoleculares. Cuando un lisado mitocondrial de células HeLa fue sometido a cromatografía de gel filtración, mTERF eluyó en dos picos, detectados por Western blotting. El primer pico eluyó con un peso molecular compatible con la forma monomérica (41 +/- 2 kDa) y las fracciones de gel filtración que lo contenían mostraban capacidad de unión a DNA, tal como se demostró por experimentos de band-shift, Western blotting y cromatografía de heparina, así como actividad de terminación de la transcripción. El segundo pico eluyó con un peso molecular estimado de 111 +/- 5 kDa, y no presentaba capacidad de unión a DNA. Así pues, proponemos que mTERF existe en dos formas, un monómero activo y un polimero inactivo. El peso molecular estimado de la forma polimerica y el hecho de que mTERF purificado de células HeLa eluye de una columna de gel filtración con un peso molecular idéntico al polimero descrito sugiere que el polímero de mTERF es un homotrímero. / The human mitochondrial transcription termination factor (mTERF) is a nuclear-encoded 39 kDa protein that recognizes a 28 base pair region within the mitochondrial tRNALeu(UUR) gene immediately adjacent to and downstream of the 16S rRNA gene. Binding of mTERF to this site promotes termination of transcription, and so this protein is considered a key factor in the control of mitochondrial rRNA synthesis. Despite the fact that mTERF binds DNA as a monomer, the presence in its sequence of three putative leucine zipper motifs led us to explore the possibility of mTERF establishing intermolecular interactions. When a mitochondrial lysate from HeLa cells was submitted to gel filtration chromatography, mTERF eluted in two peaks, detected by immunoblotting. The first peak appeared at the expected molecular weight for the monomer (41 +/- 2 kDa) and the gel filtration fractions containing it showed DNA-binding activity, as tested by band-shift, immunoblotting of the shifted band and heparin chromatography, as well as transcription-termination activity. The second peak eluted at an estimated molecular weight of 111 +/- 5 kDa, and no mTERF-promoted DNA binding activity could be detected in the corresponding gel filtration fractions. Therefore, we propose that mTERF exists in two forms, an active monomer and an inactive polymer. The estimated molecular weight of the polymer and the fact that pure mTERF also elutes from a gel filtration column as a polymeric form of identical molecular weight, suggest that the inactive polymer of mTERF is a homotrimer.
248

Mitochondrial Function and Optical Properties of the Crystalline Lens

Olsen, Kenneth Wayne January 2008 (has links)
The crystalline lens is a unique cellular organ that performs metabolic processes while maintaining optical functionality. Mitochondria play a vital role in providing the cell with the energy necessary for these metabolic processes and have recently been shown to be more metabolically active than previously thought. To test the hypothesis that mitochondrial function directly influences the optical function of the lens, bovine lenses were treated with 50 μM, 200 μM, 600 μM and 1000 μM menadione, a mitochondrial specific toxin that renders the mitochondria inactive, and the Back Vertex Distance (BVD) variability was observed over 216 hours. Confocal micrographs of secondary fibre cells’ mitochondria were also analyzed for 50 μM, 200 μM, and 600 μM menadione treatment over 48 hours. Increase in BVD variability (± s.e.m.) was observed within 24 hours from 0.28 ± 0.021 to 1.83 ± 0.75 for the 600 μM treated lenses. Confocal micrograph analysis showed a trend toward a decrease in the average length of mitochondria from 7.9 ± 0.8 to 3.7 ± 0.9 over for 200 μM treated lenses and from 5.9 ± 1.0 to 3.6 ± 0.6 for the 600 μM treated lenses over 48 hours. These data show that indeed menadione has a detrimental effect on mitochondria as a function of both time and concentration and this change in mitochondria precedes changes in BVD variability directly linking mitochondrial function to optical function.
249

Mitochondrial Function and Optical Properties of the Crystalline Lens

Olsen, Kenneth Wayne January 2008 (has links)
The crystalline lens is a unique cellular organ that performs metabolic processes while maintaining optical functionality. Mitochondria play a vital role in providing the cell with the energy necessary for these metabolic processes and have recently been shown to be more metabolically active than previously thought. To test the hypothesis that mitochondrial function directly influences the optical function of the lens, bovine lenses were treated with 50 μM, 200 μM, 600 μM and 1000 μM menadione, a mitochondrial specific toxin that renders the mitochondria inactive, and the Back Vertex Distance (BVD) variability was observed over 216 hours. Confocal micrographs of secondary fibre cells’ mitochondria were also analyzed for 50 μM, 200 μM, and 600 μM menadione treatment over 48 hours. Increase in BVD variability (± s.e.m.) was observed within 24 hours from 0.28 ± 0.021 to 1.83 ± 0.75 for the 600 μM treated lenses. Confocal micrograph analysis showed a trend toward a decrease in the average length of mitochondria from 7.9 ± 0.8 to 3.7 ± 0.9 over for 200 μM treated lenses and from 5.9 ± 1.0 to 3.6 ± 0.6 for the 600 μM treated lenses over 48 hours. These data show that indeed menadione has a detrimental effect on mitochondria as a function of both time and concentration and this change in mitochondria precedes changes in BVD variability directly linking mitochondrial function to optical function.
250

Hyperforin promotes mitochondrial function and development of oligodendrocytes

Wang, Yanlin 13 January 2010 (has links)
Major depressive disorder is a common severe psychiatric disorder with unknown etiology. Recent studies show that the loss and malfunction of oligodendrocytes are closely related to the neuropathological changes in depression, which can be reversed by antidepressant treatment. St. Johns wort is an effective and safe herbal treatment for depression in several clinical trials. However, the underlying mechanism of its therapeutic effects is unclear. In this study, we evaluated the effects of hyperforin, a major active component of this herb, on the proliferation, mitochondrial function and development of oligodendrocytes. We have demonstrated that hyperforin increases mitochondrial function and prevents mitochondrial toxin-induced cytotoxicity in oligodendrocyte lineage cells. Hyperforin promotes the maturation of oligodendrocytes but does not increase the proliferation of oligodendrocyte progenitor cell line and neural stem/progenitor cells. Our findings suggest that chronic hyperforin treatment may stimulate the development and function of oligodendrocytes. These results suggest a new mechanism of hyperforin in depression treatment. Future in vitro and in vivo studies are required to further characterize the mechanisms of hyperforin.

Page generated in 0.0349 seconds