• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Genetic analysis of the endangered silver rice rat (Oryzomys palustris natator) and Lower Keys marsh rabbit (Sylvilagus palustris hefneri)

Crouse, Amanda Louise 25 April 2007 (has links)
Genetic analyses of two endangered species of mammals in the Lower Keys of Florida (Lower Keys marsh rabbit, LKMR, Sylvilagus palustris hefneri; silver rice rat, SRR, Oryzomys palustris natator) were performed to evaluate the genetic structure of their populations. Mitochondrial sequence data (control region; 763 base pairs (bp), LKMR; 788 bp, SRR) were used to explore patterns of genetic variation within and among island populations in both species. Analysis of the SRR also included 8 polymorphic nuclear microsatellite loci (9 to 16 alleles). Phylogenetic analyses of mitochondrial sequence data for both species revealed two main lineages corresponding to eastern and western localities, with high levels of genetic structuring (LKMR FST = 0.982, SRR ΦST = 0.916). The two species differed in the level of sequence divergence between eastern and western populations (LKMR, 19 bp; SRR 4 bp). In addition to an overall similar pattern of genetic subdivision, populations of both species possessed low levels of mtDNA variation (haplotypic diversity in the LKMR = 66.1%, SRR = 58.6%). Microsatellite analyses of the SRR revealed subdivision between eastern and western regions. Although less pronounced than the structure observed in mtDNA, the overall pattern was still apparent. Additional examination of divergence between mainland and Lower Keys rice rats revealed a genetic division that indicated a lack of recent gene exchange between the regions (i.e. no shared haplotypes, the presence of private alleles, and distinctive separation in numerous analyses). Although this degree of division does not warrant species designation, the levels and patterns of divergence, both morphological and genetic, do suggest genetic isolation of mainland and island forms. This fact, along with restricted gene flow between the Lower Keys and the Everglades, suggests that the SRR is on an evolutionary trajectory separate from its mainland counterparts and validates its identification as a separate subspecies, Oryzomys palustris natator. Finally, the genetic division between eastern and western populations of the SRR and LKMR suggests that populations of both species in these two regions of the Lower Keys should be treated as separate management units, especially when considering the enhancement of populations via translocations.
2

A dual analysis of the South African Griqua population using ancestry informative mitochondrial DNA and discriminatory short tandem repeats on the Y chromosome

Heynes, Kirstie January 2015 (has links)
>Magister Scientiae - MSc / The primary objective of this Masters project was to investigate the maternal ancient substructure of the Griqua population in South Africa. Genetic ancestry was determined by investigating ancestry informative single nucleotide polymorphisms. These are located in the control region of the mitochondrial genome. The auxiliary aim was to test the validity of the UWC 10plex system in relation to a sample group of Griqua males. This short tandem repeat multiplex targets specific mutations confined to paternal lineages. The Khoi Khoi or Hottentots were the first inhabitants in the Cape. Indigenous Khoi Khoi female slaves had offspring with the European settlers in the 1800s which resulted in the Griqua population group. The incorporated European paternal ancestry is what set the Griqua apart from the native population groups at that time. Colonisation events from the mid-17th to 19th Century and the apartheid regime resulted in land dispossession of the native population and an extensively mixed gene pool in South Africa. One hundred and seventy six (N=176) male and female Griqua people were collectively sampled in Kokstad (2012), Vredendal (2012 and 2013) and at the Griqua National Conference in Ratelgat (2013). All 176 samples were analysed using mtDNA control region Sanger sequencing. The sample group (N=176) was separated based on birthplace (Origin sample group and post-colonial sample group). The origin sample group consists of individuals whose ancestors were not part of the Griqua Trek to Northern regions of South Africa and were less likely to be exposed to colonial influences. Mutations within the hypervariable segments of the mtDNA control region were used to infer haplogroups with geographic-specific population data. In this way one can plot the extent of ancient Khoisan (L0d) and Bantu influences (L1-L5) as well as the influence of East (M, A, B, E) and West (N, R, J, H) Eurasian haplogroups in the maternal ancestry of the Griqua population group. The origin sample group showed 91% African ancestry (76.8% L0d) while the post-colonial group had 78% African ancestry (60% L0d). The origin sample group had 2% East Eurasian and 7% West Eurasian ancestry, while the post-colonial group contained 20% Eurasian ancestry. There is greater admixture in the post-colonial group which can be attributed to the integration of surrounding populations during settlement periods in parts of the Northern Cape and KwaZulu-Natal. The UWC 10plex STR kit was tested to see if it could discriminate between male individuals of this admixed sample group (N=91 males). The markers for this multiplex were selected according to their ability to differentiate between individuals of African descent. It proved to be a viable Y chromosome short tandem repeat testing tool, displaying a statistically significant discrimination capacity value of 0.966 and only having 3 shared haplotypes in the sample group of 91 Griqua males. / National Research Foundation (NRF)

Page generated in 0.1219 seconds