• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 605
  • 279
  • 144
  • 58
  • 31
  • 16
  • 10
  • 8
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 1397
  • 523
  • 236
  • 211
  • 164
  • 147
  • 122
  • 102
  • 101
  • 95
  • 94
  • 90
  • 89
  • 86
  • 84
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Evaluation of Sex Differences on Mitochondrial Bioenergetics and Apoptosis in Mice

Sanz, Alberto, Hiona, Asimina, Kujoth, Gregory C., Seo, Arnold Y., Hofer, Tim, Kouwenhoven, Evelyn, Kalani, Rizwan, Prolla, Tomas A., Barja, Gustavo, Leeuwenburgh, Christiaan 01 March 2007 (has links)
It has been postulated that the differences in longevity observed between organisms of different sexes within a species can be attributed to differences in oxidative stress. It is generally accepted that differences are due to the higher female estrogen levels. However, in some species males live the same or longer despite their lower estrogen values. Therefore, in the present study, we analyze key parameters of mitochondrial bioenergetics, oxidative stress and apoptosis in the B6 (C57Bl/6J) mouse strain. There are no differences in longevity between males and females in this mouse strain, although estrogen levels are higher in females. We did not find any differences in heart, skeletal muscle and liver mitochondrial oxygen consumption (State 3 and State 4) and ATP content between male and female mice. Moreover, mitochondrial H2O2 generation and oxidative stress levels determined by cytosolic protein carbonyls and concentration of 8-hydroxy-2′-deoxyguanosine in mitochondrial DNA were similar in both sexes. In addition, markers of apoptosis (caspase-3, caspase-9 and mono- and oligonucleosomes: the apoptosis index) were not different between male and female mice. These data show that there are no differences in mitochondrial bioenergetics, oxidative stress and apoptosis due to gender in this mouse strain according with the lack of differences in longevity. These results support the Mitochondrial Free Radical Theory of Aging, and indicate that oxidative stress generation independent of estrogen levels determines aging rate.
392

The biochemical systematics of the Southern African Felidae

Mda, Nomusa Y January 1992 (has links)
The classification of the family Felidae (cats) is problematical due to the conservative nature of their morphology. Some workers classify the family into as many as 20 genera (Ewer, 1973) while others divide it into three genera (Walker et al., 1964). Such studies have largely been based on morphological and behavioural characters. Recently, molecular studies, namely, protein albumin immunological distances (Collier and O'Brien, 1985) and protein electrophoresis (Randi and Ragni, 1991) have been used to try and resolve the problems underlying this family. To complement the previous studies, in the present study we use mitochondrial (mt) DNA to construct a· phylogeny of eight members of the southern African Felidae namely, African wild cat, Felis lybica; domestic cat, Felis catus; caracal, Caracal caracal; European wild cat, Felis sylvestris; leopard, Panthera pardus; lion, Panthera leo; and cheetah, Acynonyx jubatus. Mitochondrial DNA (mt DNA) was utilized instead of nuclear DNA since it accumulates point mutations at a rate which is 5 to 10 times as fast as the nuclear DNA and is therefore particularly useful for studying more closely related organisms between sub-species, species and genera. Its apparent potential to be used as a tool for constructing genealogical trees and time scales makes it a method of choice in evolutionary studies. We used the restriction mapping approach to generate data for phylogenetic analysis. Restriction mapping was utilized since it gives good resolution at the species and genus level and evolutionary estimates derived from this method are considered more accurate than those obtained by methods such as the restriction fragment size comparison. We have also attempted to develop the methodology for sequencing part of the cytochrome b region of mt DNA following polymerase chain reaction (PCR) amplification. Both cladistic and distance approaches were used for phylogenetic construction. This study will be both of academic value and may have relevance to practical conservation management since these molecular approaches help to identify or confirm specific status especially with respect to the relationship between the domestic cat and the African and the European wild cats. Furthermore, such approaches can be used at the intraspecific level to address problems in biogeography and population genetics. Our results are in concordance with the previously determined morphological studies and albumin immunological distance studies. The restriction maps for the African wild cat and the domestic cat are identical, emphasizing their close relationship and the African origin of the domestic cat. The European wild cat showed a slight variation with the African wild cat or the domestic cat with four different restriction sites and a sequence divergence of 0.9. This suggests that the common ancestral mt DNA of these cats existed about 450 000 years ago. The lion and the leopard are monophyletic in both cladistic and distance approaches. The precise placement of caracal has yet to be resolved but it is deeply rooted in the phylogenetic analysis which would be more consistent with a separate generic status of the latter species rather than its inclusion within either Felis or Panthera. The distance analyses are consistent with the placement of the cheetah as the most distantly related species amongst the eight Felid species examined.
393

Systematics of cetaceans using restriction site mapping of mitochondrial DNA

Ohland, Derek Paul January 1992 (has links)
A phylogenetic study of eleven cetaceans was undertaken using Restriction Endonuclease Maps (RSM) of mitochondrial DNA (mtDNA). One species from the suborder mysticeti (baleen whales) was sampled, and of the ten odontocetes (toothed whales) sampled two were from the family Ziphiidae (beaked whales) and eight were from the family Delphinidae (dolphins) (each representing a different genus). The primarily opportunistically obtained (i.e. from strandings or accidental death in commercial trawl nets) heart tissue generally yielded high quantities of mtDNA which is needed for double digest fragment analysis. The mtDNA extracted from the sampled taxa was cleaved with fifteen different six-base Restriction Enzymes (RE's). Using the three-way method of analysis and aided by the computer program Resolve (Ver. 2.7) (Harley, unpublished), RSM's were constructed. Distance (Neighbor-Joining and Fitsch-Margoliash) and cladistic (Maximum Parsimony and Bootstrap) methods were used to infer phylogenies. The baleen whale was used as an outgroup for the cladistic analysis. Both the distance and both the cladistic methods produced the same single topology, which is concordant with morphologically based classifications. The two differences (within the Delphinidae), viz. Grampus' most basally rooted position and Cephalorhynchus' grouping with the Delphininae are of taxa whose groupings are unresolved in the morphologically based classifications. Using Brown et al's (1979) molecular clock, very recent divergence times at the generic, family and suborder levels were obtained, when compared to fossil based estimates. Using the odontoceti/mysticeti split the base substitution rate of cetacean mtDNA was estimated to be much slower than that of terrestrial mammals (0,3% compared to 1,0% Myr⁻¹). A similarly slow rate was calculated for cetacean nuclear DNA (nDNA) (0,09% Myr⁻¹) (Schlotterer et al, 1991). It remains an unresolved issue as to whether the base substitution rate of cetacean DNA is slower than terrestrial mammals or whether the fossil evidence needs to be reinterpreted. The time of the mysticeti/odontoceti split is palaeontologically uncertain and the suggested monophyletic status of the extant suborders has been questioned, thus making the calculation of cetacean base substitution rate risky. Equally, the incomplete fossil record can lend itself to misinterpretation.
394

Causes and Consequences of Mitochondrial Variation in Caenorhabditid Nematodes

Hicks, Kiley Ann 01 January 2012 (has links)
Mitochondria are dynamic organelles that harbor their own stream-lined genome and generate much of the ATP necessary to sustain eukaryotic life via an electron transport chain (ETC). Because of the central role for mitochondria in organismal physiology, mitochondrial genetic and phenotypic variation can alter organismal fitness and affect population genetic and evolutionary outcomes. Despite the far-reaching relevance of mitochondria to evolutionary processes and human health, we lack a basic understanding of the causes and consequences of mitochondrial genetic and phenotypic variation. In this thesis, I quantified mitochondrial reactive oxygen species (ROS), membrane potential (δΨM), and mitochondrial morphological traits within Caenorhabditis briggsae natural isolates and mutation-accumulation (MA) lines of both C. briggsae and Caenorhabditis elegans. Substantial natural variation was discovered for most mitochondrial form and function traits measured for a set of C. briggsae isolates known to harbor mitochondrial DNA structural variation in the form of a heteroplasmic nad5 gene deletion (nad5δ) that correlates negatively with organismal fitness. Most among-isolate phenotypic variation could be accounted for by phylogeographic clade membership rather than nad5δ level. Analysis of mitochondrial-nuclear hybrid strains provided support for both mtDNA and nuclear genetic variation as drivers of natural mitochondrial phenotype variation. An MA experimental approach revealed that average levels of both ROS and nad5δ heteroplasmy evolved in remarkably linear ways in C. briggsae maintained under extreme inbreeding. In particular, among C. briggsae isolates prone to acquiring the nad5δ deletion, nad5δ level increased to a plateau of ~50% during successive generations of MA treatment. Conversely, mitochondrial ROS level increased or declined in a strain-specific fashion, which also meant that the relationship between ROS and nad5δ was strain-specific. Further, all lines generated from the isolate with the highest starting level of nad5δ heteroplasmy went extinct prior to generation 20 of MA treatment. Patterns of among-line variance in ROS level were also strain-specific but generally did not conform to the canonical pattern of increasing among-line variance expected for MA experiments. MA lines of C. elegans that had previously been subjected to whole-genome sequencing were found to vary significantly in ROS levels but not in 8-oxo-dG content. Despite a significant positive correlation between 8-oxo-dG and ROS levels, no relationship between oxidative stress measures and base substitution rate or G-to-T transversion rate was revealed. Finally, analysis of patterns of phenotypic correlation for a suite of 24 mitochondrial traits measured in C. briggsae natural isolates support a role for ΔΨM in shaping mitochondrial dynamics, but no such role for mitochondrial ROS. Further, our study suggests a novel model of mitochondrial population dynamics dependent upon cellular environmental context and with implications for mitochondrial genome integrity. This work identifies extensive natural variation and capacity for evolution in organellar traits within multicellular eukaryotic species, with a central role for δΨM in mitochondrial dynamics that may have implications for evolutionary adaptation to thermal niches.
395

Osteocyte secreted factors regulate muscle function and metabolism

Huang, Tim 09 February 2022 (has links)
Muscle and bone are two tightly connected systems on both an anatomic and functional level. Bone and muscle diseases like osteoporosis and sarcopenia have been found to show an association with each other. These two organs form a complex musculoskeletal system and have been found to secrete hormone-like factors called myokines and osteokines that can influence and affect each other. Indeed, the crosstalk between bone and muscle plays an important role during development and aging. For example, myostatin, also known as growth differentiation factor 8 (GDF-8), a cytokine secreted by muscle cells, is a negative regulator of muscle and bone mass. Over expression or loss of function mutations of myostatin in mice have led to muscle atrophy and hypertrophy respectively. Interleukin-6 (IL-6) is expressed abundantly in muscle and is released during exercise and muscle contraction. It has been shown to increase osteoclast (bone cells that break down bone) formation. In the bone, osteocytes make up the majority of all cells and are terminally differentiated osteoblasts. Osteocytes control the balance between bone resorption by osteoclasts and bone formation by osteoblasts. Osteocytes are also known to express receptors for various hormones, including parathyroid hormone (PTH) receptor. As osteocytes comprise more than 90% of all bone cells in adult bone, we hypothesize that osteocytes might secrete factors capable of controlling muscle cells and that PTH might control the expression of these factors. To test this hypothesis, we used an osteocytic cell line Ocy454-12H as well as C2C12 cells, which are a well-accepted model of myocyte differentiation. To investigate the effects of osteocyte-derived factors on myocytes, C2C12 cells were treated with conditioned medium (CM) from osteocytes during specific times. We found that during C2C12 proliferation, when compared to the αMEM control, mRNA expression of MSS51 was decreased for both cells that were treated with CM of osteocytes treated with PTH (PTH CM, p=0.00570) and cells that were treated with CM of osteocytes treated with vehicle only (CM control, p=0.0178). During C2C12 differentiation, mRNA expression of myostatin was significantly (p=0.0387) decreased in cells that were treated with PTH CM compared to cells that were treated with CM control. Considering the importance of mitochondrial respiration in cells, we next analyzed oxygen consumption and metabolism in C2C12 myocytes treated with CM from Ocy454-12H using a Seahorse XF Cell Mito Stress Test. Metabolic analysis revealed that during proliferation, PTH CM led to higher basal respiration, ATP production, and coupling efficiency in C2C12 cells while lowering spare respiratory capacity. In differentiation, there was a trend in which CM control would cause a decrease across all parameters compared to the control group and the PTH CM group. Interestingly, PTH CM-treated C2C12 cells were shown to have a higher oxygen consumption rate (OCR) than the CM-control treated group and would have similar values to that of the control group (C2C12 not treated with CM). Taken together these results suggest that osteocytes might control muscle cells differentiation and metabolism via a PTH-mediated signaling pathway.
396

Study on Conservation Management of Sea Turtles by Using Genetic Information / 遺伝情報を利用したウミガメ類の保全管理に関する研究

Nishizawa, Hideaki 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第18401号 / 情博第516号 / 新制||情||91(附属図書館) / 31259 / 京都大学大学院情報学研究科社会情報学専攻 / (主査)教授 守屋 和幸, 教授 松田 哲也, 教授 荒井 修亮 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DGAM
397

Zinc Effects on Mitochondrial Morphology

Knies, Katherine A. January 2018 (has links)
No description available.
398

Association study of mitochondrial genome and cardiovascular disease

Wei, Ruipeng 23 May 2019 (has links)
No description available.
399

The Role of Mitochondrial Dysfunction in the Pathogenesis of Tauopathies

Horan, Katherine Erin 21 June 2021 (has links)
No description available.
400

Molecular characterization of cytoplasmic male sterility in Brassica napus

L'Homme, Yvan January 1994 (has links)
No description available.

Page generated in 0.0622 seconds