• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • Tagged with
  • 18
  • 18
  • 18
  • 13
  • 9
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Polymer Aluminophosphate Mixed Matrix Membranes for Gas Separations

Vaughan, Benjamin Ray 24 April 2007 (has links)
It is well known that clays dispersed in a polymer matrix decrease the permeability of all gases through that membrane. Our objective was to explore the effects on transport when a microporous layered aluminophosphate was added to a polymer matrix. The clay like layered aluminophosphate used contains sheets with 8MR ring openings in the size range of 3-4 Ã . The molecular level dispersion of this material into a polymer matrix is theorized to increase selectivity by molecular sieving. A previous study performed in our laboratory showed an increase in He/CH4 selectivity when this aluminophosphate (8MR-AlPO) was dispersed in a fluorinated polyimide. The increase in selectivity was explained as size sieving by the aluminophosphate sheets where small gas species can pass through the microstructure and large gas species have to take a tortuous path around the sheets. We performed several studies with different polymer materials in the attempt to make composite membranes that corroborated the previously seen increases in gas selectivity. In some cases different surfactants were used to swell 8MR-AlPO. In the first set of studies the methods used to produce the fluorinated polyimide composites were repeated using polydimethyl siloxane (PDMS), a copolymer of a fluorinated polyimide and PDMS, polysulfone, Matrimid, and cellulose acetate as the matrix materials. In general gas permeation studies of these materials showed an overall decrease in permeability with increasing addition of 8MR-AlPO but no substantial increase in selectivity. In an attempt to increase the chances of exfoliating and dispersing the layered aluminophosphate, an in-situ method using poly(etherimide) (PEI) was polymerized in the presence of 8MR-AlPO was employed. Mixed matrix membranes of PEI with 5wt% 8MR-AlPO were successfully fabricated and the transport properties measured. Microscopy revealed that the composites made with the 8MR-AlPO treated with a reactive surfactant showed better dispersion than those treated with the nonreactive surfactants. The permeability of gases changed very little as the result of adding 8MR-AlPO to PEI and no substantial increase in selectivity was observed. Finally, we incorporated a similar layered aluminophosphate with larger 12MR (6-7Ã ) openings into polysulfone. These composites showed barrier behavior but no increases in selectivity. / Ph. D.
2

Mixed matrix membranes consisting of porous polyimide networks and polymers of intrinsic microporosity for gas separation

Dawood, Bann January 2017 (has links)
This research aimed to develop the fabrication of mixed matrix membranes (MMMs) utilizing a polymer of intrinsic microporosity (PIM-1) with porous polyimide networks, and to explore their effect on gas transport properties. PIM-1 has been chosen as polymer matrix for its high surface area and high sorption of gases. It is also considered as interesting candidate for membrane gas separation. PIM-1 has been synthesized successfully using high temperature methods (40 min, 160 oC) and low temperature methods (72 h, 65 oC). Porous polyimide networks have been chosen as organic fillers as they have good chemical affinity to polymer matrix and can adhere much better than inorganic fillers. MPN-1 and MPN-2 were synthesized by condensation polymerization of A2 (dianhydride) and B4 (tetraamino). The polymer matrix (PIM-1) and network polyimide fillers were characterized using various characterization techniques, including FTIR, NMR spectroscopy, TGA and N2 sorption analysis. MMMs were fabricated successfully utilizing PIM-1 with 10, 20, and 30wt. % loadings of fillers. The MMMs prepared were homogenous on a macroscale. They characterized using different techniques, such as FTIR spectroscopy, powder x-ray diffraction, and scanning electron microscopy. The gas transport properties of MMMs were obtained using a time lag method. The treatment of MMMs with alcohol showed an increase in the permeability and diffusivity of gases. We aimed in this research to increase solubility of microporous polyimide network (MPN-1) by decreasing the extent of network structure. Different strategies have been utilized. First, using different molar ratios and second, using end-capping modification. The polymers were characterized using various techniques, including FTIR, NMR spectroscopy and TGA. Following this, their CO2 uptake and solubility are also examined.
3

Water Vapor Separation: Development of Polymeric and Mixed-Matrix Membranes

Akhtar, Faheem 04 1900 (has links)
Removal of water vapor from humid streams is an energy-intensive process used widely in industry. Effective dehumidification has the potential to significantly reduce energy consumption and the overall cost of a process stream. Membrane-based separations, particularly dehumidification, are an emerging technology that can change the landscape of global energy usage because they have a small footprint, they are easy to scale up, to implement and to operate. The focus of this thesis is to evaluate new directions for the development and use of materials for membrane-based dehumidification processes. It will show advances in the synthesis of new copolymers, a surprising boost in performance with the addition of 2-D materials, propose the use of polybenzimidazole for challenging dehumidification applications, and show how by tuning the nanostructure of a commercially available block copolymer (BCP) it is possible to increase the performance. The design of novel amphiphilic ternary copolymers comprising P(AN-r-PEGMA-r-DMAEMA) allowed selective removal of water vapors from gaseous streams; the effect of varying PEGMA chain length on membrane performance was studied. The membranes showed an excellent performance when the content of the PEGMA segment was 2.9 mol% with a chain length of 950Da. In the mixed-matrix approach, the inclusion of graphene oxide (GO) nanosheets in a different copolymer enhanced the membrane performance by creating selective tortuous pathways for inert gases. The well-distributed GO nanosheets in the defect-free composite membranes resulted in an 8 fold increase in water vapor/N2 selectivity compared to neat membranes. Thirdly, dense polybenzimidazole membranes showed good water vapor permeability, and the addition of TiO2-based fillers with varying chemistry and geometry enhanced the performance of PBI membranes. Lastly, the effect of tuning the morphology of commercially available BCP on dehumidification was demonstrated successfully. The self-assembled morphology formed with cylindrical hydrophobic cores, and the hydrophilic coronas, formed ion-rich highways for fast water vapor transport. Water vapor permeability improved up to 6-fold with the nanostructure modulation more than any membrane reported in the literature. In summary, the work reported in this dissertation has the potential to lay a framework towards tailor-made next-generation membranes aimed for water vapor removal in various dehumidification applications.
4

Polymers of intrinsic microporosity and incorporation of graphene into PIM-1 for gas separation

Althumayri, Khalid Abdulmohsen M. January 2016 (has links)
Membrane-based gas separation processes are an area of interest owing to their high industrial demand for a wide range of applications, such as natural gas purification from CO2 or H2, and N2 or O2 separation from air. This thesis is focused on developing and investigating polymeric-based membranes. Firstly, novel mixed matrix membranes (MMMs) were prepared, incorporating few-layer graphene in the polymer of intrinsic microporosity PIM-1. Secondly, novel polyphenylene-based polymers of intrinsic microporosity (PP-PIMs) were synthesised. An optimum preparation method of graphene/PIM-1 MMMs (GPMMMs) was established from numbers of experiments. In this study, graphene exfoliation was a step towards GPMMM preparation. Starting from graphene exfoliation in chloroform, as a good solvent for PIM-1, enhancement in graphene dispersibility was obtained with addition of PIM-1. This result helped in GPMMM preparation with high graphene content (up to 4 wt.%). Characterizations techniques such as Raman spectroscopy and scanning electron microscopy (SEM) of GPMMMs, confirmed the few layer graphene content, with morphology changes in the polymeric matrix compared to pure PIM-1.Gas permeability results of GPMMMs showed an enhancement in permeability with low loading graphene (0.1 wt.%) using a relatively low permeability PIM-1 batch, due to high water content. However, less influence of graphene incorporation on permeability was observed with a highly permeable PIM-1 batch. Reduction in permeability over time, termed an ageing effect, is known for a polymer of high-free volume like PIM-1. However, the enhancement of GPMMMs permeability after eight months storage was shown to be retained. Novel PP-PIMs were prepared from novel precursors using a series known organic reactions. PP-PIMs were divided into two groups of polymers based on their polymerization reactions. A group of polymers were prepared from condensation polymerization between bis-catecol monomers and tetrafluoroterephthalonitrile (TFTPN). Another group of polymers were prepared from Diels Alder polymerization between monomers of terminal bisphenylacetylene groups and bis tetraphenylcyclopentadienones (TPCPDs). All of which yielded polymers with apparent BET surface area in the range 290-443 m2 g-1.
5

Modelling of Pervaporation Separation of Butanol from Aqueous Solutions Using Polydimethylsiloxane (PDMS) Mixed Matrix Membranes

Ebneyamini, Arian January 2017 (has links)
In this thesis, a theoretical description of mass transport through membranes used in pervaporation separation processes has been investigated for both dense polymeric membranes and mixed matrix membranes (MMMs). Regarding the dense polymeric membranes, the Maxwell-Stefan model was extended to consider the effect of the operating temperature and membrane swelling on the mass transport of species within the membrane. The model was applied semi-empirically to predict the membrane properties and separation performance of a commercial Polydimethylsiloxane (PDMS) membrane used in the pervaporation separation of butanol from binary aqueous solutions. It was observed that the extended Maxwell-Stefan model has an average error of 10.5 % for the prediction of partial permeate fluxes of species compared to roughly 22% for the average prediction error of the Maxwell-Stefan model. Moreover, the parameters of the model were used to estimate the sorption properties and diffusion coefficients of components through the PDMS membrane at different butanol feed concentrations and operating temperatures. The estimated values of the sorption properties were observed to be in agreement with the literature experimental data for transport properties of butanol and water in silicone membranes while an exact comparison for the diffusion coefficient was not possible due to large fluctuations in literature values. With respect to the MMMs, a new model was developed by combining a one-directional transport Resistance-Based (RB) model with the Finite Difference (FD) method to derive an analytical model for the prediction of three-directional (3D) effective permeability of species within ideal mixed matrix membranes. The main novelty of the proposed model is to avoid the long convergence time of the FD method while the three-directional (3D) mass transport is still considered for the simulation. The model was validated using experimental pervaporation data for the separation of butanol from aqueous solutions using Polydimethylsiloxane (PDMS)/activated carbon nanoparticles membranes and using data from the literature for gas separation application with MMMs. Accurate predictions were obtained with high coefficient of regression (R2) between the calculated and experimental values for both applications.
6

Optimization of Using Polymeric and Mixed Matrix PVA Amine-based Membranes for CO2/N2 and CO2/CH4 Separation

Samputu, Iris 04 August 2022 (has links)
Separation of CO2, the main global warming causing greenhouse gas, from other flue gases and from biogas has become of great interest due to the predicted effects of global warming that the world is already starting to experience. This research focuses on the separation of CO2 from CH4 and N2 gases using polymeric and mixed matrix membranes. Amine-based poly vinyl alcohol (PVA) polymeric membranes that had previously shown good gas separation results were adapted for use in this research. The physical aging of the adapted membrane was initially analyzed for 37 days and it was observed that the membrane stabilized after 21 days. The adapted membrane was then optimized using a 26 factorial design to improve the membranes’ performance with respect to CO2/N2 and CO2/CH4 selectivity when tested using single gas permeation experiments at near atmospheric conditions. This was done with the membrane components: PVA, formaldehyde, poly (allylamine hydroxide), potassium hydroxide, water and 2-aminoisobutyric acid. Zeolite 13X and ZIF-8 powdered adsorbents were incorporated in the optimized membranes to prepare mixed-matrix membranes with the goal of bettering the separation performance of the membranes. Membrane characterization was done on the best performing membranes through spectroscopy, microscopy, and contact angle measurements. This study concluded with feed pressure tests on the overall best performing membranes. The performance of the fabricated membranes was compared to other polymeric and mixed-matrix membranes and Robeson’s upper bound line. Overall, the polymeric optimized membranes seemed to perform better than the filled mixed matrix membranes due to the introduction of agglomerations and cracks with both the filler materials. Also, the separation performance of the membrane improved with a decrease in pressure. At 1.5 absolute pressure, the optimized membrane was able to achieve a CO2/N2 and CO2/CH4 selectivity of 5.94 and 2.13 respectively with a CO2 permeability of 15,813 Barrer.
7

FUNCTIONALIZED SILICA MATERIALS AND MIXED-MATRIX MEMBRANES FOR ENVIRONMENTAL APPLICATIONS

Meeks, Noah Daniel 01 January 2012 (has links)
Functionalized silica materials are synthesized for various environmental applications. The overall objective is functionalization with sulfur-containing moieties for mercury sorption and as a platform for nanoparticle synthesis. The first objective is quantifying this functionalization for various silica platforms. The second objective is development of effective mercury sorbents, for both aqueous mercury and elemental mercury vapor. Third, those sorbents are incorporated into mixed matrix membranes (MMM) for aqueous mercury sorption. Fourth, functionalized silica materials are developed as platforms for the synthesis of reactive metal nanoparticles (NP) for the degradation of trichloroethylene. Thiol-functionalized silica is used as a sorbent for aqueous mercury, and a novel functionalized material (thiol-functionalized silica shell surrounding a carbon core) has been developed for this application. Total capacity and kinetics of aqueous mercury sorption were determined. The silica-coated carbon was functionalized with thiol and sulfonate moieties for regeneration under mild conditions. Finally, the sorbent particles were incorporated into polysulfone to form a mixed matrix membrane (MMM) for toxic metal capture under convective-flow conditions. High loadings (up to 50% particles, base particles of ~80 nm) were achieved in the MMM. The particles are well-dispersed which can lower mass transfer resistance to the sorption sites. The MMM also imparts several practical advantages such as ease of sorbent handling. Silica functionalized with tetrasulfide silane is used for mercury vapor sorption. Sorption kinetics and dynamic capacity depend upon pore structures of the functionalized material. The particles are thermally stable and exhibit a glass transition in the tetrasulfide silane coating, with high total sorption capacity achieved by addition of copper sulfate. Temperature effects on mercury sorption indicate a chemisorptive mechanism. Silica particles functionalized with sulfonate moieties were used as a platform for the synthesis of dispersed iron nanoparticles. These NP are applied for degradation of trichloroethylene (TCE), a persistent, toxic, and widespread pollutant. The particles were stabilized against agglomeration. Natural product reducing agents, such as ascorbic acid, adsorb to the particle surface and can protect against oxidation. These particles were demonstrated for the reductive as well as oxidative degradation of TCE.
8

MIXED MATRIX FLAT SHEET AND HOLLOW FIBER MEMBRANES FOR GAS SEPARATION APPLICATIONS

Linck, Nicholas W. 01 January 2018 (has links)
Mixed matrix membranes (MMM) offer one potential path toward exceeding the Robeson upper bound of selectivity versus permeability for gas separation performance while maintaining the benefits of solution processing. Many inorganic materials, such as zeolites, metal-organic frameworks, or carbon nanotubes, can function as molecular sieves, but as stand-alone membranes are brittle and difficult to manufacture. Incorporating them into a more robust polymeric membrane matrix has the potential to mitigate this issue. In this work, phase inversion polymer solution processing for the fabrication and testing of asymmetric flat sheet mixed matrix membranes was employed with CVD-derived multiwall carbon nanotubes (MWCNTs) dispersed in a polyethersulfone (PES) matrix. The effect of MWCNT loading on membrane separation performance was examined. Notably, a distinct enhancement in selectivity was measured for several gas pairs (including O2/N2) at relatively low MWCNT loading, with a peak in selectivity observed at 0.1 wt% loading relative to PES. In addition, no post-treatment (e.g. PDMS caulking) was required to achieve selectivity in these membranes. In contrast, neat PES membranes and those containing greater than 0.5 wt.% MWCNT showed gas selectivity characteristic of Knudsen diffusion through pinhole defects. These results suggested that at low loading, the presence of MWCNTs suppressed the formation of surface defects in the selective layer in flat sheet mixed matrix membranes. Additionally, a bench-scale, single-filament hollow fiber membrane spinning line was designed and purpose-built at the University of Kentucky Center for Applied Energy Research (CAER). Hollow fiber membrane spinning capability was developed using polyethersulfone (PES) solution dopes, and the process was expanded to include polysulfone (PSf) as well as mixed matrix membranes. The effects of key processing parameters, including the ratio of bore to dope velocities, the spinning air gap length, and the draw-down ratio, were systematically investigated. Finally, direct hollow fiber analogues to flat sheet mixed matrix membranes were characterized. Consistent with the flat sheet experiments, the mixed matrix hollow fiber membranes showed a local maximum in selectivity at a nominal loading of 0.1 wt.% MWCNT relative to the polymer, suggesting that the pinhole suppression effect introduced by MWCNTs was not limited to flat sheet membrane casting. The development of asymmetric hollow fiber mixed matrix membrane processing and testing capability at the UK Center for Applied Energy Research provides a platform for the further development of gas separation membranes. Using the tools developed through this work, it is possible to further push the frontiers of mixed matrix gas separation by expanding the capability to include more polymers, inorganic fillers, and post treatment processes which previously have been focused primarily on the flat sheet membrane geometry.
9

Development Of Pbi Based Membranes For H2/co2 Separation

Basdemir, Merve 01 January 2013 (has links) (PDF)
Recent developments have confirmed that in the future hydrogen demand in industrial applications will arise because of the growing requirements for H2 in chemical manufacturing, petroleum refining, and the newly emerging clean energy concepts. Hydrogen is mainly produced from the steam reforming of natural gas and water gas shift reactions. The major products of these processes are hydrogen and carbon dioxide. The selective removal of CO2 from the product gas is important because it poisons catalysts in the reactor and it is highly corrosive. Membrane separation processes for hydrogen purification may be employed as alternative for conventional methods such as adsorption, cryogenic distillation. Mixed matrix membranes (MMMs) are composed of an insoluble phase dispersed homogeneously in a continuous polymer matrix. They have potential in gas separation applications by combining the advantageous properties of both phases. The objective of this study is to produce neat polybenzimidazole (PBI) membranes and PBI based mixed matrix membranes for separation of H2/CO2. Furthermore, to test the gas permeation performance of the prepared membranes at permeation temperatures of 35oC to 90oC. Commercial PBI supplied from both Celanese and FumaTech were used as polymer matrix. PBI was selected based on its thermal, chemical stabilities and mechanical properties and its performance as a fuel-cell membrane produced by PBI. Micro-sized Zeolite 3A and nano-sized SAPO-34 are zeolites with 0.30 nm and 0.38 nm pore size respectively have attracted considerable interest and employed as fillers in this study. Commercial Zeolite 3A and synthesized SAPO-34 by our group was used throughout the study. Membranes were prepared using N,N-dimethylacetamide as the solvent. Prepared membranes were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The effect of annealing procedure and operating temperature on gas separation performance of resultant neat PBI, PBI/Zeolite 3A and PBI/SAPO-34 membranes were investigated by gas permeation tests. Hydrogen and carbon dioxide gases were used for single gas permeation measurements. Two different annealing strategies were utilized namely in-line annealing and in-oven annealing. In-oven annealing was performed in an oven in nitrogen atmosphere at 120oC, 0.7 atm while in-line annealing was performed in the gas permeation set-up by feeding helium as permeating gas at 90oC and 3 bar. Neat PBI and PBI/ Zeolite 3A membranes were in-oven annealed. The in-oven annealed membranes showed better selectivities with lower permeabilities, but the performance results of these membranes had low repeatability. On the other hand, in-line annealed membranes showed much higher permeabilities and lower selectivities with stable performance. By changing the annealing method hydrogen permeability increased from 5.16 Barrer to almost 7.77 barrer for neat membranes and for PBI/Zeolite 3A mixed matrix membranes increased from 5.55 to to 7.69 Barrer at 35oC. The selectivities were decreased from 6.21 to 2.31 for neat membranes and for PBI/Zeolite 3A from 5.55 to 2.63. Effect of increasing operating temperature was investigated by using in-line annealed membranes. Increasing temperature from 35oC to 90o improved the performance of the both types of membranes and repeatable results were obtained. Besides neat PBI and PBI/Zeolite 3A, PBI/SAPO-34 membranes were prepared only via in-line annealing. The addition of nano-sized filer to the membranes provided homogeneous distribution in polymer matrix for PBI/SAPO-34 membranes. For this type of membrane hydrogen permeability increased from 8.01 to 26.73 Barrer and with no change in H2/CO2 selectivities via rising temperature. Consequently, it is better to study hydrogen and carbon dioxide separation at high temperature. For all types of membranes hydrogen showed higher activation energies. In between all membranes magnitude of activation energies were the highest for PBI/SAPO-34 membrane which is an indication of good interaction between polymer and zeolite interface. In-line annealed membranes gave the best gas permeation results by providing repeatability of measurements. Among all studied membranes in-line annealed PBI/SAPO-34 membrane exhibited the best gas permeation results.
10

Graphene Oxide Mixed Matrix Membranes for Improved Desalination Performance

January 2017 (has links)
abstract: Reverse osmosis (RO) membranes are considered the most effective treatment to remove salt from water. Specifically, thin film composite (TFC) membranes are considered the gold standard for RO. Despite TFC membranes good performance, there are drawbacks to consider including: permeability-selectivity tradeoff, chlorine damage, and biofouling potential. In order to counter these drawbacks, polyamide matrixes were embedded with various nanomaterials called mixed matrix membranes (MMMs) or thin film nanocomposites (TFNs). This research investigates the use of graphene oxide (GO) and reduced graphene oxide (RGO) into the polyamide matrix of a TFC membrane. GO and RGO have the potential to alter the permeability-selectivity trade off by offering nanochannels for water molecules to sieve through, protect polyamide from trace amounts of chlorine, as well as increase the hydrophilicity of the membrane thereby reducing biofouling potential. This project focuses on the impacts of GO on the permeability selectivity tradeoff. The hypothesis of this work is that the permeability and selectivity of GO can be tuned by controlling the oxidation level of the material. To test this hypothesis, a range of GO materials were produced in the lab using different graphite oxidation methods. The synthesized GOs were characterized by X-ray diffraction and X-ray photoelectron microscopy to show that the spacing is a function of the GO oxygen content. From these materials, two were selected due to their optimal sheet spacing between 3.4 and 7 angstroms and embedded into desalination MMM. This work reveals that the water permeability coefficient of MMM embedded with GO and RGO increased significantly; however, that the salt permeability coefficient of the membrane also increased. Future research directions are proposed to overcome this limitation. / Dissertation/Thesis / Masters Thesis Civil and Environmental Engineering 2017

Page generated in 0.0939 seconds