1 |
Optimization of High Field Asymmetric Waveform Ion Mobility Spectrometry to enhance the comprehensiveness of mass spectrometry-based proteomic analysesPfammatter, Sibylle 10 1900 (has links)
La grande complexité des échantillons biologiques peut compliquer l'identification des protéines et compromettre la profondeur et la couverture des analyses protéomiques utilisant la spectrométrie de masse. Des techniques de séparation permettant d’améliorer l’efficacité et la sélectivité des analyses LC-MS/MS peuvent être employées pour surmonter ces limitations. La spectrométrie de mobilité ionique différentielle, utilisant un champ électrique élevé en forme d'onde asymétrique (FAIMS), a montré des avantages significatifs dans l’amélioration de la transmission d'ions peptidiques à charges multiples, et ce, en réduisant les ions interférents. Dans ce contexte, l'objectif de cette thèse était d'explorer les capacités analytiques de FAIMS afin d'élargir à la fois la gamme dynamique de détection des protéines/peptides et la précision des mesures en protéomique quantitative par spectrométrie de masse. Pour cela, nous avons systématiquement intégré FAIMS dans des approches classiques en protéomique afin de déterminer les changements dynamiques du protéome humain en réponse à l’hyperthermie.
Nous avons d’abord étudié les avantages de FAIMS par rapport à la quantification par marquage isobare (tandem mass tag, TMT). Cette approche permet le marquage d'ions peptidiques avec différents groupements chimiques dont les masses nominales sont identiques mais différant par leur distribution respective d'isotopes stables. Les ions peptidiques marqués par TMT produisent des ions rapporteurs de masses distinctes une fois fragmentés en MS/MS. Malheureusement, la co-sélection d'ions précurseurs conduit souvent à des spectres MS/MS chimériques et une approche plus lente basée sur le MS3 est nécessaire pour une quantification précise. Comme FAIMS améliore l’efficacité de séparation en transmettant sélectivement des ions en fonction de leur voltage de compensation (CV), nous avons obtenu moins de co-sélection de peptides. FAIMS a amélioré la quantification des peptides TMT au niveau MS2 et a permis d’obtenir 68% plus de peptides quantifiés par rapport aux analyses LC-MS/MS classiques, fournissant ainsi un aperçu plus vaste des changements dynamiques du protéome humain en réponse au stress thermique.
De plus, nous avons étudié le marquage métabolique par incorporation d’acides aminés marqués par des isotopes stables en culture cellulaire (SILAC). Si des interférences co-éluent avec les isotopes SILAC, la quantification devient imprécise et les contreparties de SILAC peuvent être assignées de manière erronée aux ions interférants du chromatogramme, faussant ainsi le rapport SILAC. Le fractionnement post-ionisation FAIMS pourrait filtrer les ions appartenant au bruit de fond qui pourraient autrement être attribués à une paire ou à un triplet SILAC pour la quantification. Dans ce projet, FAIMS a été particulièrement bénéfique pour les espèces peu abondantes et s’est montré plus performant que le fractionnement par échange de cations (SCX). En outre, FAIMS a permis la séparation des phosphoisomères fréquemment observés dans les extraits complexes de phosphoprotéomes.
Le troisième objectif de ce travail de recherche était d'explorer la séparation de l'état de charge et la transmission améliorée de peptides fortement chargés avec FAIMS et son application à l'analyse de peptides SUMOylés. FAIMS pourrait ainsi améliorer la transmission des peptides SUMOylés triplement chargés par rapport aux peptides tryptiques usuels, lesquels sont principalement doublement chargés. Ceci permettait l'enrichissement en phase gazeuse des ions peptides SUMOylés. FAIMS est une approche alternative plus simple pour fractionner les peptides SUMOylés, ce qui réduit les pertes d’échantillon et permet de simplifier le traitement des échantillons, tout en augmentant l’efficacité de séparation de manière plus automatisée et en ajoutant un ordre de grandeur de sensibilité.
Le dernier objectif de cette thèse était d’améliorer l’instrumentation de FAIMS en le jumelant aux instruments à la fine pointe de la technologie. Avec un nouveau dispositif FAIMS, développé par nos collaborateurs chez Thermo Fisher Scientific, nous avons montré une amélioration dans la robustesse et la transmission des ions pour la nouvelle interface. Dans des expériences simples en protéomique shotgun, FAIMS a étendu la gamme dynamique d'un ordre de grandeur pour une couverture protéomique plus profonde par rapport aux analyses LC-MS/MS classiques. En outre, le fractionnement en phase gazeuse de FAIMS a généré moins d’analyses chimériques en MS2, ce qui a permis d’obtenir plus d’identifications et une meilleure quantification. Pour ce faire, nous avons directement comparé le LC-FAIMS-MS/MS au LC-MS/MS/MS en utilisant la sélection de précurseur synchrone (SPS) avec et sans fractionnement en phase inverse basique. Des mesures quantitatives comparables ont été obtenues pour toutes les méthodes, à l'exception du fait que FAIMS a parmi d’obtenir un nombre 2,5 fois plus grand de peptides quantifiables par rapport aux expériences sans FAIMS.
Globalement, cette thèse met en évidence certains des avantages que FAIMS peut offrir aux expériences en protéomique en améliorant à la fois l'identification et la quantification des peptides. / The high complexity of biological samples can confound protein identification and compromise the depth and coverage of mass spectrometry-based proteomic analyses. Separation techniques that provide improved peak capacity and selectivity of LC-MS/MS analyses are often sought to overcome these limitations. High-field asymmetric waveform ion mobility spectrometry (FAIMS), a differential ion mobility device, has shown significant advantages by enhancing the transmission of multiple-charged peptide ions by reducing singly-charged interferences. In this context, the goal of this thesis was to explore the analytical capabilities of FAIMS to extend both the dynamic range of proteins/peptides detection and the precision of quantitative proteomic measurements by mass spectrometry. For this, we systematically integrated FAIMS in standard workflows to monitor the dynamic changes of the human proteome in response to hyperthermia.
We first studied the merits of FAIMS to aid isobaric labeling quantification with tandem mass tags (TMT). This approach allows the labeling of peptide ions with different chemical groups of identical nominal masses but differing in their respective distribution of stable isotopes. TMT-labeled peptide ions produce reporter ions of distinct masses once fragmented by MS/MS. Unfortunately, the co-selection of precursor ions often leads to chimeric MS/MS spectra, and a slower MS3 centric approach is needed for precise quantification. Since FAIMS improves peak capacity by selectively transmitting ions based on their compensation voltage (CV), we obtained less peptide co-selection. FAIMS improved TMT quantification at the MS2 level and achieved 68 % more quantified peptides compared to regular LC-MS/MS, providing a deeper insight into the dynamic changes of the human proteome in response to heat stress.
Further, we investigated stable isotope labeling by amino acids in cell culture (SILAC) quantification. If interferences co-elute simultaneously with SILAC isotopomers, quantification becomes inaccurate and SILAC counterparts can be missassigned to interfering ions in the highly populated chromatogram, thus skewing the SILAC ratio. FAIMS post-ionization fractionation could filter out background ions that can otherwise be attributed to a SILAC pair/triplet for quantification. In this work, FAIMS was especially beneficial for low abundant species and outperformed the standard strong cation exchange (SCX) fractionation workflow. In addition, FAIMS allowed the separation of phosphoisomers that are frequently observed in complex phosphoproteome extracts.
The third aim of this work explored the charge state separation and enhanced transmission of highly charged peptides with FAIMS and its application for SUMOylated peptide analysis. FAIMS could enhance the transmission of triply charged SUMOylated peptides over typical tryptic peptide that are predominantly doubly charged, by applying more negative CVs with FAIMS. This allowed for gas-phase enrichment of SUMOylated peptide ions. FAIMS is an alternate and more straightforward approach to fractionate SUMOylated peptides that reduced sample loss, avoided sample processing, while increasing peak capacity in a more automated manner and added one order of magnitude in sensitivity.
The last aim of this thesis was to improve the FAIMS instrumentation by interfacing it to the latest state-of-the-art instruments. With a new FAIMS device developed by our collaborators at Thermo Fisher Scientific, we demonstrate the robustness and the improved ion transmission for the new interface. In simple shotgun proteomics, FAIMS extended the dynamic range by one order of magnitude for deeper proteome coverage compared to regular LC-MS/MS. Moreover, fewer MS2 chimeric scans were generated with FAIMS gas-phase fractionation, which garnered more identifications and better quantification. For this, we directly compared LC-FAIMS-MS/MS to LC-MS/MS/MS using synchronous precursor selection (SPS) with and without basic reverse phase fractionation. Comparable quantitative measurements were obtained for all methods, except that FAIMS provided a 2.5-fold increase in the number of quantifiable peptides compared with non-FAIMS experiments.
Overall, this thesis highlights some of the advantages that FAIMS can provide for proteomics experiments by improving both peptide identification and quantification.
|
Page generated in 0.1246 seconds