• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Méthodes variationnelles en traitement d'image

Haddad, Ali 13 June 2005 (has links) (PDF)
L'objet de cette thèse est d'étudier les propriétés mathématiques de quelques modèles utilisés entraitement d'image. Suivant S. J. Osher, L. Rudin et E. Fameti, nous décomposons une image f de L² en une somme u+v où u appartient à un espace de Banach fonctionnel E et v appartient à L². L'espace E doit modéliser les objets contenus dans l'image et la décomposition optimale minimise l'énergie J(u)=||u||_E+\lambda||f-u||^2_2. La difficulté majeure est de choisir un espace E adapté. Les choix classiques sont E=\dot{B}^{1,1}_1(\R^2), qui conduit au célèbre "wavelet thresholding" de Donoho, ou E=BV(\R^2), l'espace des fonctions à variations bornées. Le dernier choix définit l'algorithme d'Osher-Rudin-Fatemi. Ces deux choix ont des défauts. Le premier efface les bords nets. Le second ne conduit pas à un seuillage des coefficients d'ondelettes. Nous proposons alors de prendre E=\B1inf(\R^2), qui conserve les bords nets et conduit à un seuillage des coefficients d'ondelette. Ce sont les deux premières parties de la thèse. Dans la troisième partie, nous étudions les propriétés mathématiques de l'algorithme 'Osher-Vese qui traite mieux les composantes texturées.

Page generated in 0.055 seconds