• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation de l'émission acoustique : Aide à l'identification de la signature acoustique des mécanismes d'endommagement / Simulation of acoustic emission : Assisting in identification of acoustic signature of damage mechanisms

Le Gall, Thomas 07 January 2016 (has links)
L’Emission Acoustique (EA) est une technique de contrôle non-destructif consistant en la mesure et l’interprétation de la signature acoustique de mécanismes d’endommagement. Dans l’approche conventionnelle (approche phénoménologique), l’interprétation des données issues des mesures par EA s’appuie sur des corrélations empiriques entre des caractéristiques de la source (le mécanisme d’endommagement) et le signal mesuré. Les modifications dues à la chaine d’acquisition de l’EA sont donc ignorées. Or, la propagation dans le matériau, la mesure par le capteur et le traitement par le système d’acquisition modifient la forme du signal et l’information qu’il transporte. Cela rend difficile l’identification de la source, et la comparaison des résultats issus d’essais effectués dans des conditions différentes. Une partie de la réponse à ces problèmes réside dans la prise en compte des étapes de transformation du signal d’EA. C’est l’objectif de l’approche quantitative de l’EA. Cette approche repose sur l’utilisation de techniques de modélisation pour évaluer l’impact de chaque étape de transformation sur le signal. Le premier volet de cette étude porte sur la validation des techniques utilisées pour simuler les étapes de transformation du signal d’EA. La méthode des éléments finis (MEF) est utilisée pour simuler la propagation du signal au sein du matériau. L’effet du capteur est quant à lui simulé par sa fonction de sensibilité, mesurée par la méthode de réciprocité, et utilisée comme fonction de transfert. Le second volet porte sur l’utilisation de ces techniques pour évaluer l’impact, sur le signal d’EA, des paramètres (position, temps de montée, amplitude) d’une source simple modélisée par des dipôles de force. Trois géométries d’éprouvette sont étudiées : une première éprouvette assimilable à une plaque, une seconde assimilable à une poutre de section rectangulaire et une dernière dont les dimensions sont intermédiaires entre une plaque et une poutre. Les résultats obtenus montrent que les signaux se propagent au sein des éprouvettes suivant des modes bien définis. Ces modes de propagation sont dépendants de la géométrie de l’éprouvette. Chaque source sollicite les modes différemment. Ainsi leur étude permet de réunir des informations sur la source afin de l’identifier. Par ailleurs, cette étude a permis de mettre en évidence des descripteurs pertinents pour l’identification des sources d’EA. Les descripteurs, corrélés entre eux, permettent une nette séparation des signaux en classes en fonction de la source. Ces résultats, obtenus en surface matériau, ne prennent pas en compte l’effet du capteur. Lorsque celui-ci est pris en compte, la signature modale des sources est modifiée ainsi que la valeur des descripteurs calculés. Cela conduit à un recouvrement des classes de signaux rendant plus difficile l’identification des sources. / Acoustic emission (AE) is a non-destructive testing technique consisting in measuring and interpreting the acoustic signature of damage mechanisms. In a conventional treatment approach (phenomenological approach), the interpretation of data measured by AE is based on empirical correlations between the source (the damage mechanism) parameters and the measured signal. Therefore, the modifications due to the acquisition chain of acoustic emission are ignored. Yet, propagation of the waves in the material, measures made by the sensor and signal treatments made by the acquisition system modify the signal and the information it carries. As a consequence, identification of the source and comparison with results from other tests made in different conditions are difficult. To find a solution to these problems, one can take into account the different steps of the acquisition chain. This is the goal of Quantitative Acoustic Emission (QAE). This approach is based on modelling techniques to evaluate the impact of each step of the acquisition chain on the AE signal. The first part of this study concerns the experimental validation of the modelling techniques that were used in simulating the steps of the acquisition chain. The Finite Element Method (FEM) is used in simulating the signal propagation inside the material. The sensor effect on the signal is simulated by its sensitivity function, measured by the reciprocity method and used as a transfer function. The second part deals with using these techniques to evaluate the impact of simple AE sources on the AE signal. These simple sources are considered as a point source and modelled by dipole forces. Three tensile specimen geometries are studied: a first specimen that can be compared to a plate, a second specimen that can be compared to a beam and a third specimen of intermediate dimensions. The obtained results show the mechanical waves propagate inside the specimens as modes. These modes depend on the specimen geometry. Each source excites the wave propagation modes in a different manner. Consequently, studying the excited modes, one can gather useful information on the AE source to identify it. In addition, this study highlighted relevant signal parameters to identify AE sources. The correlation of these parameters allows segregating the signals as a function of the source. These results obtained at the material surface don’t take into account the sensor modifications on the signal. The sensor modifies the modal signature of the sources as well as the value of the calculated parameters. This leads to more difficulties in identifying the AE sources.
2

A Numerical Approach for Wind Tunnel Noise Control / En numerisk ansats för aktiv bullerdämpning av vindtunnel

Dall, Hampus, Palm, Robert January 2021 (has links)
A wind tunnel from the 1950s located in Bromma, Stockholm, once used for military research is today used for commercial activities. Today the tunnel is used for indoor wingsuit flight and the facility has an interest in reducing the overall noise generated by the tunnel. Acoustic measurements indicate noise problems in the 50 Hz range. A 3D and a 2D model was structured with physical measured dimensions of the wind tunnel for simulations.Results indicate that a 37 dB decrease of the second higher order azimuthal spinning mode was achievable with the same number of monopole anti-sources as fan blades with each individual monopole modeling an enclosed loudspeakers. This acoustic mode was identified as the most problematic due to the cut-on frequency for the geometry coinciding with the fundamental blade pass frequency of the fan source during normal operating conditions. / På 1950-talet byggdes en vindtunnel i Bromma, Stockholm kallad "LT1". Vindtunneln användes då för militär utveckling för bland annat flygförsvaret. Idag drivs den efter en period utan användning kommersiellt för flygning av ekorrdräkt så kallad "Wingsuit" inomhus. Området kring tunneln har kommersialierats under tiden den var ur drift och omgivande verksamheter påverkas av ljud från vindtunnelns verksamhet varför tunnelns verksamhet söker förbättringsmöjligheter avseende bullerdämpning. Akustiska mätningar i och utanför tunneln indikerar ett problemområde kring frekvensen 50 Hz som härstammar från den stora fläkt som skapar flödet i tunneln. Vindtunneln modellerades i 3D och 2D med hjälp av fysiskt uppmätta dimensioner på plats. Modellerna användes sedan för att kunna numeriskt simulera och beräkna möjligheten att dämpa ljudet från fläkten med hjälp av aktiv kontroll. Resultaten indikerar att en 37 dB ljudreduktion är möjlig av andra ordningens högre akustiska snurrande mod. Detta var möjligt att uppnå med lika många anti-källor modellerade som monopoler vilket motsvarar slutna högtalare, som fläktblad. Denna akustiska mod identifierades som den mest problematiska eftersom cut-on frekvensen för tunnelns geometri sammanfaller med den fundamentala bladpass-frekvensen för fläkten under normal drift.

Page generated in 0.0497 seconds