Spelling suggestions: "subject:"modeling anda control"" "subject:"modeling ando control""
11 |
Mathematical Modeling and Computer Control of a Two-Phase Permanent-Magnet Stepping MotorWong, Richard C. S. 02 1900 (has links)
<p> The analysis of stepping motors using linear models has been simplified through identifications of the constants. Though the existing nonlinear models assuming a smooth air-gap machine may, in some cases, yield a fairly close prediction of the characteristics of a stepping motor, the models do not represent the actual motors which are essentially salient-pole motors. A new salient-pole nonlinear model is introduced. The analysis of permanent-magnet stepping motors using the nonlinear models has been simplified by assuming constant current sources. Dynamic behaviors of a permanent -magnet stepping motor are shown by phase-plane plots and step by step transient response plots.</p> <p> Computer control of stepping motors in both open-loop and closed-loop is discussed. The open-loop control has been demonstrated to be successful and a closed-loop control system using light-sensors as feedback has been designed.</p> / Thesis / Master of Engineering (MEngr)
|
12 |
Modeling and Control of Photovoltaic Systems for MicrogridsAlqahtani, Ayedh H A S January 2013 (has links)
No description available.
|
13 |
Modeling and control of a hybrid electric drivetrain for optimum fuel economy, performance and driveabilityWei, Xi 01 December 2004 (has links)
No description available.
|
14 |
Modeling and Control Strategy for Capacitor Minimization of Modular Multilevel ConvertersLyu, Yadong 20 February 2017 (has links)
The modular multi-level converter (MMC) is the most prominent interface converter used between the HVDC grid and the HVAC grid. One of the important design challenges in MMC is to reduce the capacitor size. In the current practice, a rather large capacitor bank is required to store line-frequency related circulating energy, even though a number of control strategies have been introduced to reduce the capacitor voltage ripples. In the present paper, a novel control strategy is proposed by means of harmonic injections in conjunction with gain control to completely eliminate both the line frequency and the second-order harmonic of the capacitor voltage ripple. Ideally, the proposed method works with the full bridge topology. However, the concept also works with half bridge topology with a significant reduction of line frequency related ripple. To gain a better understanding of the nature of circulating energy and the means of reducing it, the method of state plane analysis is employed to offer visual support. In addition, the design trade-off between full bridge MMC and half bridge MMC is presented and a novel control strategy for a hybrid MMC is proposed. Finally, the work is supported with a scaled down hardware demonstration. / Master of Science / The modular multi-level converter (MMC) is the most prominent interface converter used between the HVDC grid and the HVAC grid. One of the important design challenges in MMC is to reduce the capacitor size. In the current practice, a rather large capacitor bank is required by the commonly used control strategy. The large capacitor bank increases the cost and the space of the MMC system. In the present paper, a novel control strategy is proposed to significantly reduce the capacitor bank in the system. Ideally, the proposed method works with the full bridge topology. However, the concept also works with half bridge topology with a significant reduction of capacitor bank. To gain a better understanding of the nature of the operating principles of capacitors, the method of state plane analysis is employed to offer visual support. In addition, the design trade-off between full bridge MMC and half bridge MMC is presented and a novel control strategy for a hybrid MMC is proposed. Finally, the work is supported with a scaled down hardware demonstration.
|
15 |
Modeling and Control of Modular Multilevel ConverterGupta, Yugal 20 July 2022 (has links)
Due to modularity and easy scalability, modular multilevel converters (MMCs) are deemed the most suitable for high-voltage and medium-voltage power conversion applications. However, large module capacitors are usually required in MMCs to store large circulating power of line-frequency and its harmonics that flow through the capacitors. Even though several methods for minimizing the circulating power have been proposed in the literature, there is still the need for a systematic and simplified approach of addressing these control strategies and evaluating their efficacy. Moreover, the generally accepted feedback control architecture for the MMC is complicated, derived through a rigorous mathematical analysis, and therefore, not easy to intuitively comprehend. Recently, a method of modeling of the MMC based on state-plane analysis and coordinate transformation, is proposed in the literature. Based on the state-plane analysis, two kinds of circulating power in the MMC are identified that are orthogonal to each other. This means these two circulating power can be controlled individually without affecting each other. To control these circulating power, in the literature, a decoupled equivalent circuit model is developed through the coordinate transformation which clearly suggests a means for minimizing these circulating power. Further extending this work, in this thesis, the existing control concepts for reducing the circulating power are unveiled in a systematic and simplified manner utilizing the decoupled equivalent circuit model. A graphical visualization of circulating power using the state-planes is provided for each control strategy to readily compare its efficacy. Moreover, the generally accepted control architecture of the MMC is presented in an intuitive and simplified way using the decoupled circuit model. The important physics related to control implementation, originally hidden behind the complicated mathematics, is explained in detail. / Master of Science / A power converter is an electrical device that converts electrical energy from one form to another in order to be compatible with the load demand. A typical power converter consists of semiconductor switches, inductor, capacitor etc. These power converters are required in a wide range of applications: automotive and traction, motor drives, renewable energy conversion, energy storage, aircraft, power generation, transmission, and distribution, to name a few. Many of these applications are continuously increasing their power capacity to handle the escalating demands of energy that exist due to rising population numbers, industrialization, urbanization etc. Consequently, it has been a responsibility of power electronics engineers and researchers to develop power converters that can handle high voltages and high currents. Multilevel power converters have been the key-enabling developments that can withstand high-voltages while using traditional low-voltage semiconductor switches. Several multilevel converters such as the neutral point clamped converter, flying capacitor converter, cascaded H-bridge converter, modular multilevel converter (MMC) etc. have been developed and commercialized in the last two decades. Among them, the MMC is a widely accepted topology for medium- and high-voltage power conversion applications. In an MMC, several modules are stacked together in series, and each module consists of semiconductor switches and a capacitor. The series connection of the modules enables the MMC to handle high-voltage power conversion using low-voltage traditional semiconductor switches. The voltage rating of an MMC can be easily scaled-up by simply increasing the number of modules in each arm. Moreover, since several identical modules are connected in each arm, the structure of the MMC is highly modular which helps greatly in manufacturing and design. Nonetheless, in MMCs, generally large circulating power flow to the capacitor in each module, which leads to significant voltage ripples. To suppress these voltage ripples, a large capacitor is required in each module, leading to large size and weight of the converter. In the literature, several control strategies have been proposed to minimize the circulating power. However, there is still the need for a systematic and simplified approach of addressing these control strategies and evaluating their efficacy. Moreover, the generally accepted feedback control architecture for the MMC is complicated, derived through a rigorous mathematical analysis, and therefore, not easy to intuitively comprehend. Recently, a decoupled equivalent circuit model has been developed in the literature. This model clearly explains the process of power flow in the MMC between input and output and the nature of the circulating power. The equivalent circuit model provides the circulating power, that are orthogonal to each other, meaning they can be controlled individually without affecting each other. Moreover, the equivalent circuit model clearly suggests a means for minimize the circulating power by providing two "ideal" control laws. Further extending this work, in this thesis, the existing control concepts for reducing the circulating power are unveiled in a systematic and simplified manner utilizing the decoupled equivalent circuit model. Moreover, the generally accepted control architecture of the MMC is presented in an intuitive and simplified way via the decoupled circuit model. The important physics related to control implementation, originally hidden behind the complicated mathematics, is explained in detail.
|
16 |
Toward privacy-preserving component certification for metal additive manufacturingBappy, Mahathir Mohammad 13 August 2024 (has links) (PDF)
Metal-based additive manufacturing (AM) has emerged as a cutting-edge technology for fabricating complex geometries with high precision. However, the major challenges to the wider adoption of metal AM technologies are process uncertainty-induced quality issues. Consequently, there is an urgent need for fast and reliable certification techniques for AM components, which can be achieved by leveraging Artificial Intelligence (AI)-enabled modeling. Developing a robust AI-enabled model presents a significant challenge because of the costly and time-intensive nature of acquiring diverse and high volume of datasets. In this context, the data-sharing attributes of Manufacturing-as-a-Service (MaaS) platforms can facilitate the development of AI-enabled certification techniques in a collaborative manner. However, sharing process data poses critical concerns about protecting users’ intellectual property and privacy since it contains confidential product design information. To address these challenges, the overarching goal of this research is to investigate how process data and process physics can be leveraged to develop in-situ component certification techniques focusing on data privacy for metal AM systems. This dissertation aims to address the need for novel quality monitoring methodologies by utilizing diverse data sources derived from a range of printed samples. Specifically, the research effort focuses on 1) the use of in-situ thermal history data and ex-situ X-ray computed tomography data for real-time layer-wise anomaly detection method development by analyzing the morphological dynamics of melt pool images; 2) the development of a framework to evaluate the design information disclosure of various thermal history-based feature extraction methods for anomaly detection; and 3) the privacy-preserving and utility-aware adaptive AM data deidentification method development that takes thermal history data as input.
|
17 |
A Computational Model of the Temporal Processing Characteristics of Visual Priming in SearchHaggit, Jordan M. January 2016 (has links)
No description available.
|
18 |
Bidirectional DC-DC Power Converter Design Optimization, Modeling and ControlZhang, Junhong 26 February 2008 (has links)
In order to increase the power density, the discontinuous conducting mode (DCM) and small inductance is adopted for high power bidirectional dc-dc converter. The DCM related current ripple is minimized with multiphase interleaved operation. The turn-off loss caused by the DCM induced high peak current is reduced by snubber capacitor. The energy stored in the capacitor needs to be discharged before device is turned on. A complementary gating signal control scheme is employed to turn on the non-active switch helping discharge the capacitor and diverting the current into the anti-paralleled diode of the active switch. This realizes the zero voltage resonant transition (ZVRT) of main switches. This scheme also eliminates the parasitic ringing in inductor current.
This work proposes an inductance and snubber capacitor optimization methodology. The inductor volume index and the inductor valley current are suggested as the optimization method for small volume and the realization of ZVRT. The proposed capacitance optimization method is based on a series of experiments for minimum overall switching loss. According to the suggested design optimization, a high power density hardware prototype is constructed and tested. The experimental results are provided, and the proposed design approach is verified.
In this dissertation, a general-purposed power stage model is proposed based on complementary gating signal control scheme and derived with space-state averaging method. The model features a third-order system, from which a second-order model with resistive load on one side can be derived and a first-order model with a voltage source on both sides can be derived. This model sets up a basis for the unified controller design and optimization. The Δ-type model of coupled inductor is introduced and simplified to provide a more clearly physical meaning for design and dynamic analysis. These models have been validated by the Simplis ac analysis simulation.
For power flow control, a unified controller concept is proposed based on the derived general-purposed power stage model. The proposed unified controller enables smooth bidirectional current flow. Controller is implemented with digital signal processing (DSP) for experimental verification. The inductor current is selected as feedback signal in resistive load, and the output current is selected as feedback signal in battery load.
Load step and power flow step control tests are conducted for resistive load and battery load separately. The results indicate that the selected sensing signal can produce an accurate and fast enough feedback signal. Experimental results show that the transition between charging and discharging is very smooth, and there is no overshoot or undershoot transient. It presents a seamless transition for bidirectional current flow. The smooth transition should be attributed to the use of the complementary gating signal control scheme and the proposed unified controller. System simulations are made, and the results are provided. The test results have a good agreement with system simulation results, and the unified controller performs as expected. / Ph. D.
|
19 |
Técnicas de control para la conexión en paralelo de inversores aplicadas a convertidores de interconexión entre los buses de CC y CA de microrredes híbridas e inversores fotovoltaicos centralizados de alta potencia.Liberos Mascarell, María Antonia 21 June 2021 (has links)
[ES] En este trabajo se proponen técnicas de control específicas para la paralelización de inversores sin transformador conectados a red, en aplicaciones de interconexión de buses de microrredes híbridas e instalaciones fotovoltaicas de gran potencia. La paralelización de inversores presenta múltiples ventajas como la modularidad, la redundancia o la flexibilidad para ampliar la potencia de un sistema o de una instalación. En el caso de inversores fotovoltaicos centralizados, también permite la conexión/desconexión de módulos inversores conectados en paralelo permitiendo una mayor eficiencia global cuando se trabaja a bajas potencias. Sin embargo, la paralelización de inversores provoca la aparición de corrientes de circulación que pueden provocar efectos indeseables en el sistema o en la instalación.
Las contribuciones que se llevan a cabo en esta tesis están todas ellas orientadas a la mejora de la operación de inversores en paralelo en las aplicaciones descritas y son las siguientes:
1) Se presenta un modelo preciso en pequeña señal de n inversores conectados en paralelo con filtro de conexión a red LCL, en el cual se tienen en consideración los términos de acoplamiento entre fases de los inductores trifásicos.
2) Se propone una técnica de control en la que se emplean n-1 lazos de regulación que controlan la componente homopolar de las corrientes e imponen un valor nulo en régimen permanente, a fin de eliminar las corrientes de circulación.
3) Se propone el uso de moduladores en espacio vectorial de tres dimensiones (3D-SVM) para implementar el control de la componente homopolar de las corrientes.
4) Se muestran resultados analíticos, de simulación y experimentales que validan el esquema de control propuesto considerando la aparición de corrientes de circulación debido a distintos factores: desbalanceo de inductancias entre las fases de un inversor y de distintos inversores, desbalanceo de potencia entre inversores y empleo de modulaciones distintas en los inversores conectados en paralelo. Los ensayos experimentales se realizan sobre un convertidor trifásico de 10 kW formado por la conexión en paralelo de dos módulos de 5 kW cada uno.
5) Se muestran resultados de simulación y experimentales de la aplicación de las técnicas de reducción de corrientes de circulación a convertidores de interconexión entre los buses de alterna y continua de microrredes híbridas. Los ensayos experimentales se particularizan a un convertidor trifásico de 7.5 kW formado por un módulo de 5 kW y otro de 2.5 kW conectados en paralelo, emulando una eventual ampliación de potencia del 50%.
6) Se lleva a cabo el estudio por simulación de un sistema fotovoltaico de 2 MW compuesto por cuatro inversores de 500 kW conectados en paralelo, demostrando que el control de las componentes homopolares de las corrientes reduce en gran medida el valor de las corrientes de circulación y mejora el desempeño de la instalación.
7) Por último, se propone una técnica de control para mejorar la eficiencia global de inversores fotovoltaicos centralizados de potencia elevada, el cual se basa en la utilización de modelos funcionales bidimensionales de eficiencia para activar/desactivar los módulos de potencia en función del punto de operación del campo fotovoltaico. / [CA] En aquest treball es proposen tècniques de control específiques per a la paral·lelització d'inversors sense transformador connectats a la xarxa, en aplicacions d'interconnexió de busos de micro-xarxes híbrides i instal·lacions fotovoltaiques de gran potència. La paral·lelització d'inversors presenta múltiples avantatges com ara són la modularitat, la redundància o la flexibilitat per ampliar la potència d'un sistema o d'una instal·lació. En el cas d'inversors fotovoltaics centralitzats, també es permet la connexió/desconnexió de mòduls inversors connectats en paral·lel permetent una major eficiència global quan es treballa a potències baixes. En canvi, la paral·lelització d'inversors provoca l'aparició de corrents de circulació que poden provocar efectes indesitjables en el sistema o en la instal·lació.
Totes les contribucions que es porten a terme en aquesta tesi estan orientades a la millora de la operació de inversors en paral·lel en les aplicacions descrites i son les següents:
1)Es presenta un model precís en xicoteta senyal de n inversors connectats en paral·lel amb filtre LCL de connexió a xarxa, en el qual es tenen en consideració els termes d'acoblament entre fases dels inductors trifàsics.
2) Es proposa una tècnica de control en la que s'usen n-1 llaços de regulació que controlen la component homopolar de les corrents i imposen un valor nul en règim permanent, a la fi d'eliminar les corrents de circulació.
3) Es proposa l'ús de moduladors en espai vectorial de tres dimensions (3D SVM) per implementar el control de la component homopolar de les corrents.
4) Es mostren resultats analítics, de simulació i experimentals els quals validen l'esquema de control proposat considerant l'aparició de corrents de circulació degut a diversos factors: desbalanceig d'inductàncies entre les fases d'un inversor i de distints inversors, desbalanceig de potència entre inversors i ús de modulacions distintes en els inversors connectats en paral·lel. Els assajos experimentals es realitzen sobre un inversor trifàsic de 10 kW format per la connexió en paral·lel de dos mòduls de 5 kW cadascun.
5) Es mostren resultats de simulació i experimentals de l'aplicació de les tècniques de reducció de corrents de circulació a convertidors d'interconnexió entre els busos d'alterna i contínua de micro-xarxes híbrides. Els assajos experimentals es particularitzen a un convertidor trifàsic de 7.5 kW format per un mòdul de 5 kW i altre de 2.5 kW connectats en paral·lel, emulant una eventual ampliació de potència del 50 %.
6) Es duu a terme l'estudi per simulació d'un sistema fotovoltaic de 2 MW format per quatre inversors de 500 kW connectats en paral·lel demostrant que el control de les components homopolars de les corrents redueixen en gran mesura el valor de les corrents de circulació i millora l'acompliment de la instal·lació.
7) Per últim, es proposa una tècnica de control per a la millora de l'eficiència global d'inversors fotovoltaics centralitzats de potència elevada, el qual es basa en la utilització de models funcionals bidimensionals d'eficiència per activar/desactivar els mòduls de potència en funció del punt d'operació del camp fotovoltaic. / [EN] In this work they have been proposed specific control techniques for the parallelization of transformerless inverters connected to the grid in two specific applications: i) the interlinking converter between ac and dc bus of hybrid microgrids and ii) high power photovoltaic farms. Paralleling of inverters presents some advantages as modularity, redundancy or flexibility for increasing the power of a system or of a plant. In photovoltaic centralized inverters, the parallel inverters can be connected and disconnected in order to improve the global efficiency when the system works at low power. However, the inverters paralleling causes the appearance of circulating currents which can produce undesirable effects in the system or in the plant.
The contributions that are carried out in this thesis are all of them aimed at improving the operation of parallel inverters in the described applications and they are as follows:
1) It has been presented an accurate small signal model of n parallel inverters with an LCL grid filter, in which the mutual coupling terms of the three-phase inductors has been considered.
2) It has been proposed a control technique with n-1 control loops that control the zero-sequence current component by setting a zero value in steady state, looking for eliminating the circulating currents.
3) It has been proposed the use of three-dimension space vector modulator (3D SVM) to implement the zero-sequence currents control.
4) The analytical results have been validated by means of simulation and experimental results, showing the performance of the proposed control scheme considering the appearance of circulating currents due to different factors: i) inductor imbalances between the phases of an inverter or ii) between different inverters, iii) power imbalances between inverters and iv) the use of different modulation techniques in the parallel inverters. The experimental tests have been carried out on a 10 kW three-phase converter composed by the parallel connection of two 5 kW modules.
5) They have been shown both simulation and experimental results of the application of circulating current reduction techniques to interlinking converters between the DC and the AC buses of hybrid microgrids. The experimental tests have been particularized to a 7.5 kW three-phase converter composed by a 5 kW and a 2.5 kW module connected in parallel, emulating an eventual 50 % power expansion.
6) Is has been carried out the simulation study of a 2 MW photovoltaic system composed by four 500 kW inverters connected in parallel, showing that the control of the zero-sequence currents greatly reduces the value of the circulating currents and improve the system performance.
7) Finally, it has been proposed a control technique for the improvement of the global efficiency of high power photovoltaic centralized inverters, which is based in the use of bidimensional functional efficiency models to activate/deactivate the power modules according to the operation point of the photovoltaic farm. / Liberos Mascarell, MA. (2021). Técnicas de control para la conexión en paralelo de inversores aplicadas a convertidores de interconexión entre los buses de CC y CA de microrredes híbridas e inversores fotovoltaicos centralizados de alta potencia [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/168190
|
20 |
Large-scale layered systems and synthetic biology : model reduction and decompositionPrescott, Thomas Paul January 2014 (has links)
This thesis is concerned with large-scale systems of Ordinary Differential Equations that model Biomolecular Reaction Networks (BRNs) in Systems and Synthetic Biology. It addresses the strategies of model reduction and decomposition used to overcome the challenges posed by the high dimension and stiffness typical of these models. A number of developments of these strategies are identified, and their implementation on various BRN models is demonstrated. The goal of model reduction is to construct a simplified ODE system to closely approximate a large-scale system. The error estimation problem seeks to quantify the approximation error; this is an example of the trajectory comparison problem. The first part of this thesis applies semi-definite programming (SDP) and dissipativity theory to this problem, producing a single a priori upper bound on the difference between two models in the presence of parameter uncertainty and for a range of initial conditions, for which exhaustive simulation is impractical. The second part of this thesis is concerned with the BRN decomposition problem of expressing a network as an interconnection of subnetworks. A novel framework, called layered decomposition, is introduced and compared with established modular techniques. Fundamental properties of layered decompositions are investigated, providing basic criteria for choosing an appropriate layered decomposition. Further aspects of the layering framework are considered: we illustrate the relationship between decomposition and scale separation by constructing singularly perturbed BRN models using layered decomposition; and we reveal the inter-layer signal propagation structure by decomposing the steady state response to parametric perturbations. Finally, we consider the large-scale SDP problem, where large scale SDP techniques fail to certify a system’s dissipativity. We describe the framework of Structured Storage Functions (SSF), defined where systems admit a cascaded decomposition, and demonstrate a significant resulting speed-up of large-scale dissipativity problems, with applications to the trajectory comparison technique discussed above.
|
Page generated in 0.1068 seconds