• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Expression of the plastid genome in the dinoflagellate Gonyaulax polyedra

Wang, Yunling January 2005 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
2

Identification and characterization of two new archaeal methyltransferases forming 1-methyladenosine or 1-methyladenosine and 1-methylguanosine in transfer RNA / Identification et caractérisation de deux nouvelles méthyltransférases archéennes formant de la 1-méthyladénosine ou de la 1-méthyladénosine et de la 1-méthylguanosine dans l'ARN de transfert

Kempenaers, Morgane 26 September 2011 (has links)
All cellular RNAs contain numerous chemically modified nucleosides, but the largest number and the greatest variety are found in transfer RNA (tRNA). These modifications are posttranscriptionally introduced by modification enzymes during the complex process of tRNA maturation. The function of these modified nucleosides is not well known, but it seems that when present in the anticodon region, they play a direct role in increasing translational efficiency and fidelity, while modifications outside the anticodon region would be involved in the maintenance of the structural integrity of tRNA. Among the naturally occurring nucleoside modifications, base and ribose methylations are by far the most frequently encountered. They are catalyzed by tRNA methyltransferases (MTases), using generally the S-adenosyl-L-methionine (AdoMet) as methyl donor. Most of the knowledge about tRNA MTases comes from studies on bacterial and eukaryal model organisms, and very few informations are available about tRNA methylation in Archaea, particularly for thermophilic and hyperthermophilic Archaea whose GC-rich tRNAs are difficult to sequence. Nevertheless, some works on tRNA hydrolyzates from thermophiles or hyperthermophiles highlighted the presence of numerous methylated nucleosides. Furthermore, it has been shown that the only sequenced tRNA from an hyperthermophilic Archaea, the initiator methionine tRNA (tRNAiMet) from the Sulfolobus acidocaldarius, contains ten modified nucleosides, nine of them bearing a methylation on the base, on the ribose or on both base and ribose.<p>Of special interest is the modified nucleoside found at position 9 of this tRNA. It is an adenosine derivative, but the exact nature of the modification is unknown. In the yeast S. cerevisiae, some tRNAs with a guanosine at this position are methylated by the MTase Trm10p to form m1G9 (126). Since Trm10p-related proteins are found in hyperthermophilic archaea, such a homolog could be responsible for modification at position 9 of S. acidocaldarius tRNAiMet. In this work, we showed indeed that the Trm10p-related protein Saci_1677p from S. acidocaldarius methylates position 9 of tRNAs, but is specific for position N1 of adenosine, forming m1A rather than m1G. Interestingly, we demonstrated that Tk0422p from T. kodakaraensis, the euryarchaeal homolog to Saci_1677p, is the first tRNA MTase presenting a broadened nucleoside recognition capability, methylating both position N1 of A and of G to form m1A and m1G at position 9 of tRNAs. <p>This unique tRNA (m1A-m1G) MTase activity was further studied on one hand by site-directed mutagenesis of residues potentially important for the catalytic activity of Tk0422p enzyme, and on the other hand by determining the importance of the pH on the efficacy of the methylation reaction. Indeed, protonation state of atom N1 of A and G differs at physiological pH (N1 of G being protonated contrary to N1 of A), and we showed that m1G formation was increased with increasing pH. This could reflect the need of the enzyme to deprotonate G to be able to catalyze de methyltransfer. We showed also that the activity of the two archaeal enzymes (Saci_1677p and Tk0422p) present different dependence toward the structure of tRNA, the euryarchaeal Tk0422p requiring the intact tRNA structure while its crenarchaeal counterpart Saci_1677p being able to modify some truncated tRNAs.<p>Finally, some attempts to unveil the in vivo function of these enzymes, as well as their enzymatic mechanisms were undertaken, but these experiments are very preliminary and underline the needs for the development of genetic tools applicable to Archaea./ Tous les ARN cellulaires contiennent des nucléosides modifiés chimiquement, mais ce sont les ARNt qui en contiennent la plus grande variété et la plus grande proportion. Ces modifications sont introduites post-transcriptionnellement par des enzymes de modification durant le processus complexe de maturation des ARNt. Parmi les nucléosides modifiés, les méthylations de bases ou de riboses sont les plus fréquemment rencontrées. Elles sont catalysées par des ARNt méthyltransférases (MTases) utilisant pour la plupart de la S-adenosyl-L-methionine (AdoMet) comme donneur de méthyle. <p>La plupart des connaissances relatives aux ARNt MTases provient d’études sur des organismes modèles eucaryotes et bactériens, et peu de choses sont connues en ce qui concerne les archées, plus particulièrement les archées thermophiles et hyperthermophiles dont les ARNt GC riches sont difficiles à séquencer. Néanmoins, des travaux sur des hydrolysats d’ARNt de thermophiles et hyperthermophiles ont mis en évidence la présence d’un grand nombre de nucléosides modifiés. De plus, le seul ARNt d’archée hyperthermophile séquencé à ce jour, l’ARNtiMet de S. acidocaldarius contient 10 nucléosides modifiés, essentiellement par méthylation de la base, du ribose, ou des deux à la fois. Le nucléoside présent en position 9 de cet ARNt porte une modification chimique de nature encore inconnue. Or, chez la levure S. cerevisiae, certains ARNt possédant une guanosine à cette position sont méthylés par la MTase Trm10p pour former la 1-méthylguanosine. Etant donné qu’il existe une protéine apparentée à Trm10p chez les archées hyperthermophiles, celle-ci pourrait être responsable de la modification trouvée en position 9 de l’ARNtiMet de S. acidocaldarius. Dans ce travail, nous avons montré qu’effectivement la protéine Saci_1677p de la crénarchée S. acidocaldarius, orthologue à Trm10p, modifie la position 9 des ARNt, mais catalyse la formation de 1-methyladénosine (m1A) plutôt que de m1G dans les ARNt. De façon intéressante, nous avons montré que chez l’euryarchée T. kodakaraensis, l’enzyme Tk0422p homologue à Saci_1677p est capable de méthyler à la fois une adénosine et une guanosine en position 9 des ARNt. A notre connaissance, cette enzyme est la première ARNt MTase présentant une capacité élargie de reconnaissance de substrat.<p>Le présent travail a contribué à la caractérisation fonctionnelle et structurale de ces deux enzymes archéennes, et a permis d’améliorer la connaissance générale de la machinerie de modification des ARNt d’archées.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.1548 seconds