• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • Tagged with
  • 9
  • 9
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mécanisme d'importation des ARN de transfert cytosoliques dans la mitochondrie de plante

Salinas, Thalia Drouard, Laurence. January 2007 (has links) (PDF)
Thèse doctorat : Biologie Moléculaire Végétale : Strasbourg 1 : 2006. / Thèse soutenue sur un ensemble de travaux. Titre provenant de l'écran-titre. Bibliogr. 15 p.
2

La tyrosyl-ARNt synthétase mitochondriale humaine originalités fonctionnelles, structurales et place dans l'évolution /

Bonnefond, Luc Giegé, Richard. Rudinger-Thirion, Joëlle January 2007 (has links) (PDF)
Thèse de doctorat : Sciences du vivant : Strasbourg 1 : 2007. / Titre provenant de l'écran-titre. Bibliogr. p. 225-249.
3

Studying the role of the precursor of mitochondrial lysyl-tRNA synthetase in the targeting of a cytosolic tRNA-Lys in the mitochondria of S. cerevisiae

Kamenskiy, Petr Tarassov, Ivan. Krasheninnikov, Igor. January 2007 (has links) (PDF)
Thèse de doctorat : Aspects moléculaires et cellulaires de la biologie : Strasbourg 1 : 2007. Thèse de doctorat : Aspects moléculaires et cellulaires de la biologie : Université M. V. Lomonossov, Moscou : 2007. / Thèse soutenue en co-tutelle. Titre provenant de l'écran-titre. Bibliogr. p. 58-69.
4

Identification et rôles de nouveaux facteurs protéiques cytosoliques impliqués dans l'import d'ARNt dans les mitochondries de levure

Brandina, Irina L. Martin, Robert Krasheninnikov, Igor. January 2006 (has links) (PDF)
Thèse doctorat : Aspects Moléculaires et Cellulaires de la Biologie : Strasbourg 1 : 2006. Thèse doctorat : Aspects Moléculaires et Cellulaires de la Biologie : M. Lomonossov - Moscou - Russie : 2006. / Thèse soutenue sur un ensemble de travaux. Thèse soutenue en co-tutelle. Titre provenant de l'écran-titre. Bibliogr. 9 p.
5

Novel inhibitors of the tRNA-dependent amidotransferase of "Helicobacter pylori" : Peptides generated by phage display and dipeptide-like compounds

Pham, Van Hau 24 April 2018 (has links)
Cette thèse présente la découverte de nouveaux inhibiteurs de l’amidotranférase ARNt-dépendante (AdT), et résume les connaissances récentes sur la biosynthèse du Gln-ARNtGln et de l’Asn-ARNtAsn par la voie indirecte chez la bactérie Helicobacter pylori. Dans le cytoplasme des eucaryotes, vingt acides aminés sont liés à leur ARNt correspondant par vingt aminoacyl-ARNt synthétases (aaRSs). Ces enzymes sont très spécifiques, et leur fonction est importante pour le décodage correct du code génétique. Cependant, la plupart des bactéries, dont H. pylori, sont dépourvues d’asparaginyl-ARNt synthétase et/ou de glutaminyl-ARNt synthétase. Pour former le Gln-ARNtGln, H. pylori utilise une GluRS noncanonique nommée GluRS2 qui glutamyle spécifiquement l’ARNtGln ; ensuite, une AdT trimérique, la GatCAB corrige le Glu-ARNtGln mésapparié en le transamidant pour former le Gln-ARNtGln, qui lira correctement les codons glutamine pendant la biosynthèse des protéines sur les ribosomes. La formation de l’Asn-ARNtAsn est similaire à celle du Gln-ARNtGln, et utilise la même GatCAB et une AspRS non-discriminatrice. Depuis des années 2000, la GatCAB est considérée comme une cible prometteuse pour le développement de nouveaux antibiotiques, puisqu’elle est absente du cytoplasme de l’être humain, et qu’elle est encodée dans le génome de plusieurs bactéries pathogènes. Dans le chapitre 3, nous présentons la découverte par la technique du « phage display » de peptides cycliques riches en tryptophane et en proline, et qui inhibent l’activité de la GatCAB de H. pylori. Les peptides P10 (CMPVWKPDC) et P9 (CSAHNWPNC) inhibent cette enzyme de façon compétitive par rapport au substrat Glu-ARNtGln. Leur constante d’inhibition (Ki) est 126 μM pour P10, et 392 μM pour P9. Des modèles moléculaires ont montré qu’ils lient le site actif de la réaction de transmidation catalysée par la GatCAB, grâce à la formation d’une interaction π-π entre le résidu Trp de ces peptides et le résidu Tyr81 de la sous-unité GatB, comme fait le A76 3’-terminal de l’ARNt. Dans une autre étude concernant des petits composés contenant un groupe sulfone, et qui mimiquent l’intermédiaire de la réaction de transamidation, nous avons identifié des composés qui inhibent la GatCAB de H. pylori de façon compétitive par rapport au substrat Glu-ARNtGln. Cinq fois plus petits que les peptides cycliques mentionnés plus haut, ces composés inhibent l’activité de la GatCAB avec des Ki de 139 μM pour le composé 7, et de 214 μM pour le composé 4. Ces inhibiteurs de GatCAB pourraient être utiles pour des études mécanistiques, et pourraient être des molécules de base pour le développement de nouvelles classes d’antibiotiques contre des infections causées par H. pylori. / This thesis describes the discovery of inhibitors of a tRNA-dependent amidotransferase (AdT) and summarizes the present state of our knowledge about the two-step biosynthesis of Gln-tRNAGln and Asn-tRNAAsn in Helicobacter pylori. In eukaryotic cytoplasm, twenty amino acids (aa) are generally attached to their cognate tRNAs by twenty corresponding aminoacyl-tRNA synthetases (aaRSs). These enzymes have a high specificity, and their function is important to the proper decoding of mRNA. However, in a number of bacteria including H. pylori, GlnRS and/or AsnRS are absent. To synthesize Gln-tRNAGln, H. pylori first uses a noncanonical GluRS2 which is specific for tRNAGln to form Glu-tRNAGln; then the trimeric AdT (GatCAB) transforms Glu-tRNAGln into Gln-tRNAGln which is proper for protein biosynthesis. In a similar manner, the biosynthesis of Asn-tRNAAsn also takes place in H. pylori by using the same GatCAB and a canonical nondiscriminating AspRS. The widespread use of these indirect pathways among prominent human pathogens, and their absence in the mammalian cytoplasm, identify AdT as a promising target for the development of new and highly specific antimicrobial agents. By using phage display, we discovered several cyclic peptides rich in tryptophan and proline that inhibit H. pylori GatCAB. Peptides P10 (CMPVWKPDC) and P9 (CSAHNWPNC) are competitive inhibitors of GatCAB with respect to its substrate Glu-tRNAGln. The inhibition constants (Ki) of P10 and P9 are 126 and 392 μM, respectively. Their docking models revealed that they bind to the transamidation active site of GatB via π-π stacking interactions with Tyr81, as does the 3’-terminal A76 of tRNA. We also discovered two small dipeptide-like sulfone-containing inhibitors of H. pylori GatCAB by mimicking the intermediate of its transamidation reaction. Although they are much smaller than the cyclic peptides mentioned above, they are competitive inhibitors of GatCAB with respect to GlutRNAGln, with Ki values of 139 μM for compound 7 and 214 μM for compound 4. These inhibitors could be useful not only to study the reaction mechanisms of GatCAB, but also could be lead compounds for the development of a new class of antibiotics to treat infections caused by H. pylori.
6

Aminoacyl-tRNA synthétases et tRNA : études fonctionnelles, structurales et génétiques d'une famille de molécules essentielles pour l'expression du code génétique.

Eriani, Gilbert 14 December 2001 (has links) (PDF)
Depuis 1991, année de mon recrutement au CNRS, mon activité de recherche est centrée sur l'étude d'une famille d'enzymes intervenant dans la biosynthèse protéique : les aminoacyl-tRNA synthétases. Mon travail s'est articulé autour de l'étude de leur organisation fonctionnelle et de la compréhension des bases moléculaires de la reconnaissance spécifique entre ces enzymes et leurs substrats. Des approches multidisciplinaires (biologie moléculaire, biochimie, cristallographie aux rayons X, enzymologie et génétique) ont été mises en œuvre pour une exploration globale de ces problèmes. Nous avons pu progresser dans la connaissance de deux enzymes modèles : l'aspartyl-tRNA synthétase et l'arginyl-tRNA synthétase, deux enzymes appartenant respectivement à la classe II et à la classe I des aminoacyl-tRNA synthétases. Nous avons localisé les sites de fixation des différents substrats, proposé des mécanismes catalytiques et sélectionné in vivo des variants d'aminoacyl-tRNA synthétases et de tRNAs aux propriétés de reconnaissance modifiées.
7

Un Modèle de Solvatation Semi-Implicite pour la Simulation des Macromolécules Biologiques

Basdevant, Nathalie 14 October 2003 (has links) (PDF)
Dans la cellule des organismes vivants, le solvant (l'eau) joue un rôle très important dans la stabilisation des structures tridimensionnelles des macromolécules biologiques et lors de leurs interactions. Les méthodes théoriques de simulations de modélisation moléculaire permettent de compléter les informations partielles sur l'hydratation des biomolécules obtenues par les méthodes expérimentales. Nous avons développé un nouveau modèle de solvatation semi-implicite pour représenter le solvant en modélisation moléculaire. Ce modèle décrit le solvant comme des particules microscopiques dont les propriétés diélectriques découlent des lois macroscopiques de l'électrostatique. Nous obtenons ainsi à l'équilibre électrostatique un fluide de particules de Lennard-Jones non polaires, polarisables par le champ électrique créé par le soluté. Ce modèle a l'intérêt de prendre en compte la structure moléculaire du solvant tout en calculant efficacement l'énergie libre électrostatique de solvatation du système. De plus, il est d'un faible coût numérique comparé aux méthodes explicites. Après avoir implémenté notre modèle dans un programme de dynamique moléculaire et l'avoir paramétré de façon simple, nous l'avons appliqué à plusieurs peptides, protéines et acides nucléiques (ADN et ARN de transfert). Les trajectoires de ces simulations sont stables sur une à deux nanosecondes, et les structures obtenues sont tout à fait en accord avec les méthodes expérimentales et les méthodes théoriques de solvatation explicites. Notre modèle permet également de retrouver les sites préférentiels d'hydratation des molécules étudiées identifiés expérimentalement ou théoriquement, malgré l'absence de liaisons hydrogène dans notre solvant. De plus, nous observons de bonnes corrélations entre les énergies libres électrostatiques de solvatation calculées avec notre modèle et celles calculées avec les méthodes de résolution de l'équation de Poisson-Boltzmann, et ces résultats paraissent très encourageants.
8

Structure-function relationship studies on the tRNA methyltransferases TrmJ and Trm10 belonging to the SPOUT superfamily

Somme, Jonathan 13 January 2015 (has links)
During translation, the transfer RNAs (tRNAs) play the crucial role of adaptors between the messenger RNA and the amino acids. The tRNAs are first transcribed as pre-tRNAs which are then maturated. During this maturation, several nucleosides are modified by tRNA modification enzymes. These modifications are important for the functions of the tRNAs and for their correct folding. Many of the modifications are methylations of the bases or the ribose. Four families of tRNA methyltransferases are known, among which the SPOUT superfamily. Proteins of this superfamily are characterised by a C-terminal topological knot where the methyl donor is bound. With the exception of the monomeric Trm10, all known SPOUT proteins are dimeric and have an active site composed of residues of both protomers. Interestingly, depending on the organism, the same modification can be catalysed by completely unrelated enzymes. On the other hand, homologous enzymes can have different specificities or/and activities. These differences are well illustrated for the TrmJ and Trm10 enzymes.<p>In the first part of this work we have identified the TrmJ enzyme of Sulfolobus acidocaldarius (the model organism of hyperthermophilic Crenarchaeota) which 2’-O-methylates the nucleoside at position 32 of tRNAs. This protein belongs to the SPOUT superfamily and is homologous to TrmJ of the bacterium Escherichia coli. A comparative study shows that the two enzymes have different specificities for the nature of the nucleoside at position 32 as well as for their tRNA substrates. To try to understand these shifts of specificity at a molecular level we solved the crystal structure of the SPOUT domains of the two TrmJ proteins.<p>In the second part of this work, we have determined the crystal structure of the Trm10 protein of S. acidocaldarius. This is the first structure of a 1-methyladenosine (m1A) specific Trm10 and also the first structure of a full length Trm10 protein. The Trm10 protein of S. acidocaldarius is distantly related to its yeast homologues which are 1-methylguanosine (m1G) specific. To understand the difference of activity between the Trm10 enzymes, we compared the yeast and the S. acidocaldarius Trm10 structures. Remarkably several Trm10 proteins (such as Trm10 of Thermococcus kodakaraensis) are even able to form both m1A and m1G. To understand the capacity of the T. kodakaraensis protein to methylate A and G, a mutational study was initiated./Lors de la traduction, les ARN de transfert (ARNt) jouent le rôle crucial d’adaptateurs entre l’ARN messager et les acides aminés. Les ARNt sont transcrits sous forme de pré-ARNt qui doivent être maturés. Lors de cette maturation, plusieurs nucléosides sont modifiés. Un grand nombre de ces modifications sont des méthylations des bases ou du ribose. Quatre familles d’ARNt méthyltransferases sont actuellement connues, dont la superfamille des SPOUT. Les membres de cette superfamille sont caractérisés par un nœud dans la chaîne polypeptidique du côté C-terminal. C’est au niveau de ce nœud que se lie la S-adénosylméthionine qui est le donneur de groupement méthyle. A l’exception de Trm10 qui est monomérique, toutes les protéines SPOUT connues sont dimériques et leur site actif est formé de résidus provenant des deux protomères. Selon l’espèce, une même modification peut être formée à la même position dans la molécule d’ARNt par des enzymes qui appartiennent à des familles différentes. A l’opposé, des enzymes homologues peuvent présenter des spécificités ou des activités différentes.<p>Au cours de ce travail, nous avons identifié l’enzyme TrmJ de Sulfolobus acidocaldarius (l’organisme modèle des Crénarchées hyperthermophiles) qui méthyle le ribose du nucléoside en position 32 des ARNt. Cette protéine est un homologue de l’enzyme TrmJ de la bactérie Escherichia coli. L’étude comparative que nous avons réalisée a révélé que ces deux enzymes présentent une différence de spécificité pour la nature du nucléoside en position 32 ainsi que pour les ARNt substrats. Afin de comprendre ces différences de spécificité au niveau moléculaire, les structures des domaines SPOUT des deux TrmJ ont été déterminées et comparées.<p>En parallèle, nous avons résolu la structure cristalline de la protéine Trm10 de S. acidocaldarius. C’est la première structure disponible d’un enzyme Trm10 formant de la 1-méthyladénosine (m1A). C’est aussi la première structure complète d’une protéine Trm10. Les enzymes homologues des levures Saccharomyces cerevisiae et Schizosaccharomyces pombe qui n’ont que peu d’identité de séquence avec l’enzyme de S. acidocaldarius, forment de la 1-méthylguanosine (m1G). Dans le but de comprendre comment ces enzymes homologues peuvent présenter des activités différentes, leurs structures ont été comparées. De manière surprenante, certains homologues de Trm10 (comme l’enzyme de l’Euryarchée Thermococcus kodakaraensis) sont capables de former du m1A et du m1G. Afin de mieux comprendre comment ces protéines sont capables de méthyler deux types de bases, nous avons initié l’étude de l’enzyme Trm10 de T. kodakaraensis par mutagenèse dirigée.<p><p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
9

Identification and characterization of two new archaeal methyltransferases forming 1-methyladenosine or 1-methyladenosine and 1-methylguanosine in transfer RNA / Identification et caractérisation de deux nouvelles méthyltransférases archéennes formant de la 1-méthyladénosine ou de la 1-méthyladénosine et de la 1-méthylguanosine dans l'ARN de transfert

Kempenaers, Morgane 26 September 2011 (has links)
All cellular RNAs contain numerous chemically modified nucleosides, but the largest number and the greatest variety are found in transfer RNA (tRNA). These modifications are posttranscriptionally introduced by modification enzymes during the complex process of tRNA maturation. The function of these modified nucleosides is not well known, but it seems that when present in the anticodon region, they play a direct role in increasing translational efficiency and fidelity, while modifications outside the anticodon region would be involved in the maintenance of the structural integrity of tRNA. Among the naturally occurring nucleoside modifications, base and ribose methylations are by far the most frequently encountered. They are catalyzed by tRNA methyltransferases (MTases), using generally the S-adenosyl-L-methionine (AdoMet) as methyl donor. Most of the knowledge about tRNA MTases comes from studies on bacterial and eukaryal model organisms, and very few informations are available about tRNA methylation in Archaea, particularly for thermophilic and hyperthermophilic Archaea whose GC-rich tRNAs are difficult to sequence. Nevertheless, some works on tRNA hydrolyzates from thermophiles or hyperthermophiles highlighted the presence of numerous methylated nucleosides. Furthermore, it has been shown that the only sequenced tRNA from an hyperthermophilic Archaea, the initiator methionine tRNA (tRNAiMet) from the Sulfolobus acidocaldarius, contains ten modified nucleosides, nine of them bearing a methylation on the base, on the ribose or on both base and ribose.<p>Of special interest is the modified nucleoside found at position 9 of this tRNA. It is an adenosine derivative, but the exact nature of the modification is unknown. In the yeast S. cerevisiae, some tRNAs with a guanosine at this position are methylated by the MTase Trm10p to form m1G9 (126). Since Trm10p-related proteins are found in hyperthermophilic archaea, such a homolog could be responsible for modification at position 9 of S. acidocaldarius tRNAiMet. In this work, we showed indeed that the Trm10p-related protein Saci_1677p from S. acidocaldarius methylates position 9 of tRNAs, but is specific for position N1 of adenosine, forming m1A rather than m1G. Interestingly, we demonstrated that Tk0422p from T. kodakaraensis, the euryarchaeal homolog to Saci_1677p, is the first tRNA MTase presenting a broadened nucleoside recognition capability, methylating both position N1 of A and of G to form m1A and m1G at position 9 of tRNAs. <p>This unique tRNA (m1A-m1G) MTase activity was further studied on one hand by site-directed mutagenesis of residues potentially important for the catalytic activity of Tk0422p enzyme, and on the other hand by determining the importance of the pH on the efficacy of the methylation reaction. Indeed, protonation state of atom N1 of A and G differs at physiological pH (N1 of G being protonated contrary to N1 of A), and we showed that m1G formation was increased with increasing pH. This could reflect the need of the enzyme to deprotonate G to be able to catalyze de methyltransfer. We showed also that the activity of the two archaeal enzymes (Saci_1677p and Tk0422p) present different dependence toward the structure of tRNA, the euryarchaeal Tk0422p requiring the intact tRNA structure while its crenarchaeal counterpart Saci_1677p being able to modify some truncated tRNAs.<p>Finally, some attempts to unveil the in vivo function of these enzymes, as well as their enzymatic mechanisms were undertaken, but these experiments are very preliminary and underline the needs for the development of genetic tools applicable to Archaea./ Tous les ARN cellulaires contiennent des nucléosides modifiés chimiquement, mais ce sont les ARNt qui en contiennent la plus grande variété et la plus grande proportion. Ces modifications sont introduites post-transcriptionnellement par des enzymes de modification durant le processus complexe de maturation des ARNt. Parmi les nucléosides modifiés, les méthylations de bases ou de riboses sont les plus fréquemment rencontrées. Elles sont catalysées par des ARNt méthyltransférases (MTases) utilisant pour la plupart de la S-adenosyl-L-methionine (AdoMet) comme donneur de méthyle. <p>La plupart des connaissances relatives aux ARNt MTases provient d’études sur des organismes modèles eucaryotes et bactériens, et peu de choses sont connues en ce qui concerne les archées, plus particulièrement les archées thermophiles et hyperthermophiles dont les ARNt GC riches sont difficiles à séquencer. Néanmoins, des travaux sur des hydrolysats d’ARNt de thermophiles et hyperthermophiles ont mis en évidence la présence d’un grand nombre de nucléosides modifiés. De plus, le seul ARNt d’archée hyperthermophile séquencé à ce jour, l’ARNtiMet de S. acidocaldarius contient 10 nucléosides modifiés, essentiellement par méthylation de la base, du ribose, ou des deux à la fois. Le nucléoside présent en position 9 de cet ARNt porte une modification chimique de nature encore inconnue. Or, chez la levure S. cerevisiae, certains ARNt possédant une guanosine à cette position sont méthylés par la MTase Trm10p pour former la 1-méthylguanosine. Etant donné qu’il existe une protéine apparentée à Trm10p chez les archées hyperthermophiles, celle-ci pourrait être responsable de la modification trouvée en position 9 de l’ARNtiMet de S. acidocaldarius. Dans ce travail, nous avons montré qu’effectivement la protéine Saci_1677p de la crénarchée S. acidocaldarius, orthologue à Trm10p, modifie la position 9 des ARNt, mais catalyse la formation de 1-methyladénosine (m1A) plutôt que de m1G dans les ARNt. De façon intéressante, nous avons montré que chez l’euryarchée T. kodakaraensis, l’enzyme Tk0422p homologue à Saci_1677p est capable de méthyler à la fois une adénosine et une guanosine en position 9 des ARNt. A notre connaissance, cette enzyme est la première ARNt MTase présentant une capacité élargie de reconnaissance de substrat.<p>Le présent travail a contribué à la caractérisation fonctionnelle et structurale de ces deux enzymes archéennes, et a permis d’améliorer la connaissance générale de la machinerie de modification des ARNt d’archées.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.0747 seconds