• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 35
  • 23
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 126
  • 126
  • 55
  • 51
  • 39
  • 34
  • 34
  • 29
  • 29
  • 24
  • 23
  • 21
  • 21
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vacuum-Assisted Wet Shaping of Paper

Busch, Amanda J. 13 April 2006 (has links)
Premium absorbent paper products (e.g., two-ply towel and tissue) can achieve higher fluid holding capacity per unit dry weight by means of increasing their void volume per unit weight. In turn, high void volume can be attained by increasing the overall thickness of each ply through molding the paper into a three-dimensional ("mini-egg-crate") structure before drying it. This research investigates the effect of three types of parameters: mold geometrical, operational, and paper parameters. These variables are examined with respect to their effect on the resulting overall thickness. Because the experimental research is fundamental in nature, it employs molding structures of a simplified geometry (produced via rapid prototyping techniques) rather than the geometrically complex molding fabrics used commercially. A goal of the project is the understanding of the physics of the wet shaping process, in which vacuum is used to deform the wet paper web into the openings in the molding structure. Another goal is identification of limitations or boundaries of the wet shaping process (e.g., conditions for which "pinholes" occur in the paper). Supporting theoretical analysis of the shaping/molding problem is performed, to provide bases for correlating experimental data and for the optimization of molding geometrical parameters. The result of this study provides quantitative information for some variables that affect the final sheet thickness.
2

Using Maturity to Predict Girder Camber

Bert, Stephen M. 17 June 2005 (has links)
The objective of this research was to determine if differential camber of prestressed concrete girders could be reduced by accurate prediction of initial camber at release of prestress. Maturity at prestress transfer was used to calculate modulus of elasticity for predicting camber at release. The research consists of a literature review of maturity methods, testing of a standard concrete mix to determine strength and modulus functions and measurement of girder camber and maturity. Both the Nurse-Saul and the Arrhenius maturity models were evaluated. Maturity relationships were developed for concrete mixes containing Type II and Type III cements. A relationship of modulus as a function of maturity was developed. Seven girders were tested. Camber predictions within 0 to ¼ in. of actual camber were obtained using modulus of elasticity calculated from a maturity based function. Comparison was made between maturity based modulus and standard strength based modulus models. Camber predictions based on modulus calculated based on field cured cylinder strengths were within 0 to ½ in. / Master of Science
3

Modelling the influence of stocking on longitudinal and radial variation in wood properties of Pinus radiata on a warm Northland site

Zoric, Branislav January 2009 (has links)
The objective of this study was to determine how final stocking influences tree growth and radial and longitudinal variation in wood properties at a Pinus radiata D. Don plantation located at one of the warmest forest sites in New Zealand, Forsyth Downs forest in Northland. This thesis addressed both the effect of stocking on stand basal area, height, diameter and branch diameter and the effect of stocking on wood properties microfibril angle (MFA), module of elasticity and density. Finally, how ring width influences wood properties and whether this variable accounts for the treatment effects was investigated. Stocking, height and ring number and all interactions between these variables significantly affected ring width. Ring width by itself was significant as a predictor of density, but when it was combined with other class level variables it was insignificant (i.e. does not account for treatment effects), and it did not add anything to a model with only class effects. There was a significant impact of ring number on density while ring width was insignificant in the same model. MFA was significantly affected by ring width, height and ring number in the tree, and all interactions, apart from the three way interaction, but not by stocking. Ring width was significant in the MFA model both by itself and when it was combined with other variables. Ring width accounted for the stocking effect. The best model of MOE included the class level effects of stocking, height and ring number within the tree, and all interactions between these variables, and ring width, as a continuous variable. While there was a significant effect between stockings this was relatively weak compared to the other main effects. Ring width largely accounted for the effect of stocking, but not that of ring number, or height.
4

Experimental investigation of effective modulus of elasticity and shear modulus of brick masonry wall under lateral load

Akhi, Taohida Parvin 03 1900 (has links)
The primary objective of this research program was to investigate the effective modulus of elasticity and shear modulus of brick masonry walls under lateral load, and to to justify using the Jaeger and Mufti method to calculate the effective modulus of elasticity and shear modulus of brick masonry walls. The experimental program involved the testing of three unreinforced brick masonry walls under in-plane and vertical loads. Linear Variable Differential Transducers were used to record the horizontal and vertical displacements of the walls. The experimental results were used to evaluate the modulus of elasticity and the shear modulus of walls under flexure. The experimental results were compared to the finite element analysis results. It was found that the finite element analysis yields similar results to the experimental results. It was also found that the Jaeger and Mufti method to calculate effective modulus of elasticity and shear modulus of brick masonry walls is effective for design purposes.
5

Experimental investigation of effective modulus of elasticity and shear modulus of brick masonry wall under lateral load

Akhi, Taohida Parvin 03 1900 (has links)
The primary objective of this research program was to investigate the effective modulus of elasticity and shear modulus of brick masonry walls under lateral load, and to to justify using the Jaeger and Mufti method to calculate the effective modulus of elasticity and shear modulus of brick masonry walls. The experimental program involved the testing of three unreinforced brick masonry walls under in-plane and vertical loads. Linear Variable Differential Transducers were used to record the horizontal and vertical displacements of the walls. The experimental results were used to evaluate the modulus of elasticity and the shear modulus of walls under flexure. The experimental results were compared to the finite element analysis results. It was found that the finite element analysis yields similar results to the experimental results. It was also found that the Jaeger and Mufti method to calculate effective modulus of elasticity and shear modulus of brick masonry walls is effective for design purposes.
6

The influence of weed control, clone, and stem dimensions on wood quality of 17 year old stems of Pinus radiata which has been grown on the Canterbury Plains

Callaghan, Andree January 2013 (has links)
This study determined whether variation in clone, weed control treatment, or stem dimensions, could have an impact upon outerwood stiffness in 17 year old Pinus radiata stems. An experiment located south west of the Dunsandel township in Canterbury, New Zealand, was used to collect measures of acoustic velocity (windward and downward sides) from each of the 278 trees. Diameter at breast height, tree height, and height to live crown were also recorded for each tree. Findings from this research were compared with previous research carried out when the trees were ages eight and eleven. Assuming a green density of 1,000 kg/m3, Young’s Modulus equation was used to convert acoustic velocity to wood stiffness, or, Modulus of Elasticity (MOE). The effect of wind direction upon mean wood stiffness was not significant (α = 0.05). Consequently, one measure of wood stiffness was calculated per tree. Mean stem slenderness and mean wood stiffness values were calculated by block, weed control treatment, and clone. Weed control treatments had a significant impact upon mean wood stiffness in comparison to the control treatment (0.03 m2 area of weed control). Significant differences did not exist between different levels of weed control, ie., 0.75 m2, 3.14 m2 and 9 m2 chemical spot spray area. Clonal variation and stem slenderness significantly affected mean wood stiffness measures. Stem slenderness appeared to be correlated with clonal variation (interaction between clone and slenderness was not significant), however, according to Dr. Euan Mason, this finding is not corroborated by findings from other research on the wood quality of clones in Canterbury (personal communication, September 16, 2013). An analysis of covariance (ANCOVA) determined that mean height to the live crown was not a significant predictor of wood stiffness. Comparison with earlier research showed no change in the ranking of wood stiffness values by clone or treatment.
7

A study of Douglas-fir anatomical and mechanical properties and their interactions

Bawcombe, Jonathan January 2012 (has links)
Low embodied energy, ability to act as a carbon store and ease of recycling gives forest products an important role within a low carbon built environment. Almost 25 % of the coniferous resource within the South West of England is Douglas-fir, a species reputed for producing high quality timber. Despite this, the region is facing challenges in delivering the resources full potential, a contributing factor to which is a loss of knowledge regarding its quality. The aim of the work presented is to gain an improved understanding of the quality of Douglas-fir grown within the region, from the perspective of uses in structural applications, the factors which influence material quality and their interrelationships. Flexural modulus of elasticity, flexural and compressive strength were determined utilising small clear specimens derived from 1.3 and 8 m heights within 27 trees from six sites across the South West. Results showed a rise in the magnitude of properties with increasing cambial age, particularly so at younger ages. Differences in values were also recorded between stem heights and with rate of growth. These were however less than age related variations. Results compared favourably to those reported in other studies conducted on the species. Utilising SilviScan-3, anatomical properties including density, microfibril angle and cellular dimensions were measured. Significant variations were recorded with cambial age, and in some instances sampling height. The influence of growth rate on anatomical properties was small. Through statistical and composite modelling, microfibril angle was found to be strongly associated with changes in modulus of elasticity within juvenile wood. Within mature wood and for strength properties, density was the controlling factor. It was shown that a moderate proportion of variations in mechanical properties can be accounted for utilising visually identifiable wood characteristics. The new understanding that has been gained through this work presents opportunities for improved utilisation, the implementation of effective management practices and the development of more efficient visual grading techniques.
8

Effect of initial stand spacing and breed on dynamic modulus of elasticity of Pinus radiata

Waghorn, Matthew J. January 2006 (has links)
Wood stiffness or modulus of elasticity (MOE) is one of the most important wood properties for solid timber applications, and as such, the efficacy of wood use, especially for structural timber is strongly related to MOE. MOE in Pinus radiata is highly variable and poorly understood. In this study, the effect of initial stand spacing and breed on outerwood MOE and the vertical distribution of MOE of Pinus radiata was assessed. Understanding positive or negative influences of growth caused by initial stand spacing and genetic material on MOE is appealing because it could enable us to better comprehend how forest growers could adapt silvicultural operations to the demands of wood processing. Physical characteristics of different breeds and propagation methods of Pinus radiata were assessed at a variety of initial stand spacings. Stem diameter, crown height, stem slenderness and branch size were all heavily influenced by stand spacing. Breed had a marginally significant influence on diameter and stem slenderness. Internode length was not affected by stand spacing, but showed sizeable differences, especially between the long internode 870 breed and the remaining growth and form (GF) breeds. Outerwood MOE was significantly (P<0.0001) influenced by stand spacing and breed, but not their interaction (P>0.05). MOE scaled positively with stand spacing. MOE increased by 39% from 5.4 GPa at 209 stems ha-1 to 7.5 GPa at 2551 stems ha-1. The majority of this increase (33%) occurred between 209 and 835 stems ha-1. Physiologically aged cuttings of greater maturation status exhibited greater MOE, with the three-year-old cuttings being stiffer than the one-year-old cuttings, seedlings from the 870, 268 and 850 series, by 15, 17, 22 and 27%, respectively. Stem slenderness exhibited the strongest significant (P<0.0001) relationship with MOE (r2=0.49), followed by green crown height (r2=0.46) and diameter (r2=0.44). Stem slenderness and green crown height had a direct influence on MOE that explained 53% of the variance in MOE. MOE was also significantly (P<0.0001) influenced by spacing and breed when using the resonance technique to assess whole stem MOE. The vertical distribution of MOE showed that the lowest portion of the stem (bolt 1) was approximately 30% less stiff than bolts 2 and 3. After the greatest MOE value had been obtained at bolt 3, MOE gently declined to the top of the measured stem. Variation of MOE within trees was significant (58%) at the high stockings of 1457 and 2551 stems ha-1, but somewhat lower (36%) at the lower stockings. The 870 breed was approximately 8% and 16% stiffer than the 268 and 850 breeding series respectively, across all stockings, with the three-year-old cuttings being 7% stiffer than the one-year-old cuttings. At stockings of 481 stems ha-1 and less, the proportional height at which MOE was greatest within a tree was between 25% and 50% of stem height. At stockings above 481 stems ha-1 the proportional height at which maximum MOE was obtained was between 15% and 40% of stem height. Bolt slenderness was found to be the most significant factor impacting on MOE of the bolt. Regression of critical buckling height against diameter at ground level yielded a scaling exponent of 0.55, which was lower than the scaling exponent of 0.67 predicted with constant density-specific stiffness. There was a tendency for some bolts with lower mean diameter to display significantly higher safety margins than bolts with higher mean diameter, suggesting that the largest bolts, which occur at the base of tree, are the point of most likely critical failure.
9

Fibres orientation on sawn surfaces : Can fibre orientation on sawn surfaces be determined by means of high resolution scanning / Fiber riktningen på sågade ytor : Kan fiber riktningen på sågade ytor bestämmas med hjälp av högupplöst scanning

Briggert, Andreas January 2014 (has links)
In 2013 the European journal of wood and wood products published an article regarding a new method to predict strength in structural timber (Olsson et al 2013). By determining the fibres orientation on all four surfaces of each board in sample of timber using a high resolution scanner the authors were able to achieve a coefficient of determination, R2, as high as 0.71 between bending strength and a new indicating property (IP). For the same sample of timber Olsson et al (2013) determined the R2 by axial dynamic excitation as 0.59. However, all boards used in their investigation were planed before scanning. This study examines if a high resolution scanner could be used to determine the fibre orientation on the surfaces of sawn timber boards of Norway spruce. Both band sawn surfaces and circular sawn surfaces were examined. The procedure in this investigation is described as follows. Firstly, both the band sawn and the circular sawn boards were scanned by a WoodEye® scanner and together with dimensions, weight and the first longitudinal resonance frequency, a modulus of elasticity (MOE) profile was calculated for each board. The MOE profiles were calculated according to Olsson et al (2013) i.e. by a transformation matrix based upon the fibres orientation and a compliance matrix based on material parameters for Norway spruce. Secondly, the corresponding MOE profiles were then determined after the boards had been planed. As a result two MOE profiles were determined for each board. An indicating property (IP) was defined as the lowest value along each MOE profile. To compare the results a regression analysis was performed in which the IPs defined before planing worked as predictor variable and IPs defined after planing worked as response variable. The band sawn band boards yielded an R2 = 0.94 and the circular sawn boards an R2 = 0.93. Further the standard error of estimate was SEE = 829.1 MPa and SEE = 640.9 MPa respectively. As a last step in this investigation the SEE values achieved in this study where implemented on to the sample Olsson et al (2013) used in their investigation.
10

Application of impact resonance method for evaluation of the dynamic elastic properties of polypropylene fiber reinforced concrete

El-Newihy, Adham 10 August 2017 (has links)
For evaluation and quality control of concrete structures, the impact resonant frequency method is widely accepted for monitoring structure in-service properties and detecting structural damage. Common defects in concrete include consolidation problems during casting and development of micro-cracks during stages of hydration. Monitoring the dynamic characteristics of concrete plays an essential role in detecting real-time and early stages of deterioration. Ample research is focused on detecting large defects, however not much information is available on detection of minor defects of composites like fiber reinforced concrete. Change of elastic behavior when Polypropylene fibers are added as reinforcement is investigated. Destructive tests on structures in-service are not always feasible thus leaving non-destructive condition assessment as the only option. Amongst the various non-destructive tests available, vibrational tests provide a practical method to predict the dynamic moduli of structures (dynamic modulus of elasticity, dynamic modulus of rigidity and dynamic Poisson’s ratio). The objective of this research is to assess the dynamic elastic properties of Polypropylene Fiber Reinforced Concrete (PFRC) in correlation with induced cracks and common consolidation defects using a lab developed non-destructive testing method that relies on impulse excitation and stress wave propagation to measure changes in the resonant frequency when polypropylene fibers are added to concrete. In the experimental program, two fiber sizes, macro and micro, with various volume contents have been used for casting PFRC cylinders and prisms. Fundamental resonant frequencies were measured for all cylinders and prisms in the transverse and longitudinal directions. All measured frequencies are directly related to the low-strain dynamic modulus of elasticity. In addition, PFRC prisms were used to investigate the relationship between the dynamic modulus of elasticity and modulus of rigidity. Several batches of similar mixtures are used to investigate different parameters that affect the resonant frequency of concrete such as the water to cement ratio, curing condition and age. Results indicated a decrease in the resonant frequency and elastic properties with an increase of the fiber content or length. Micro fibers showed higher dynamic elastic moduli when compared to macro fibers of the same mixture under saturated curing conditions. Post-cracked PFRC cylinders and flexural fractured prisms retained some of the resonant frequency with macro fibers exhibiting better elastic recovery when cracked. / Graduate

Page generated in 0.103 seconds