• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 8
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Accuracy of hay moisture sensing systems for round alfalfa bales

Schwindt, Jacob 30 January 2019 (has links)
Master of Science / Department of Biological & Agricultural Engineering / Ajay Sharda / Moisture measurement is critical when baling alfalfa into round bales for feed. If alfalfa is too wet or too dry, it can greatly diminish the alfalfa crop’s feed quality and cause economic loss to producers. Therefore, monitoring of alfalfa moisture content while baling is critical for producers to maintain hay quality and maximize profits. Currently, there are several different types of moisture sensing technologies available for round balers. But, concerns exist regarding their accuracy and repeatability during hay baling. Therefore, objectives of this project are to 1) Establish a protocol for coring methodology to assess the variation of moisture within a round alfalfa hay bale, and 2) Compare and contrast sensing accuracy and repeatability of different hay moisture sensing technologies. A coring methodology was established to determine the average moisture within a round bale based upon the way a sensor in a round baler chamber would determine the bale moisture; by looking at the moisture contents along the round bale diameter. This method was then compared with the more traditional method of using radial cores only to determine the whole bale moisture content. A sensor testing stand was developed to perform comparative testing between the sensors on the same alfalfa hay bale and collect core samples of material immediately after it was formed. Six commercially available moisture sensors were selected to measure moisture at four pre-determined locations on hay bales. After the sensor measurements, core samples were extracted from the exact same locations to determine actual moisture using oven-drying method. The moisture measurements were conducted during three growth stages and bales were formed with three approximate moisture contents of 10%, 15% and 20%. Six different cuts of alfalfa of the same variety were used to capture all the measurements. A seventh cut was also performed for moisture measurements with the alfalfa baled at 15% and the same growth stage, but different baler compression cylinder pressures (250, 400, and 800psi). Actual moisture content was across different sampling locations were compared to understand moisture distribution and establish coring protocol. Sensor and oven-dried measurements were compared to determine accuracy and repeatability of sensing technologies. Results showed that sensors and oven-dried measurement varied for all the sensors for every growth stage and baling moisture levels, with one sensor exhibiting lowest variability in its readings. The comparison identified the most accurate and reliable sensor among the ones currently available. A second year of testing was also conducted to validate the research from the first year of testing. Future research needs to be conducted to identify correlation between the testing stand readings and actual hay baler moisture sensor readings.
2

LoRa Based Moisture Sensing System

Badran, Rasha January 2023 (has links)
Water is an important parameter for crop growth, and the information about the moisture content in soil at different depths is very useful for farmers to determine the best time to water the soil and to irrigate farmland so as to maximize their yield. This thesis project aims to develop a prototype of a multi-depth moisture sensor probe that is part of a large sensing system used in agriculture. The sensor probe has three sets and is required to last for 6-12 months of usage and to be reproduced at a low cost. The sensor probe consists of three sensor boards, on each of which has two different capacitive based sensors and one analog temperature sensor. The three boards are placed approximately 20 cm from each other in the probe. During this project, the two capacitive based sensors were developed, one with arc-shaped plates operating at a frequency less than 1 MHz, and one with electrodes in the form of annular rings operating at a high frequency, approximately 100 MHz. The moisture content in the soil is calculated based on the measurement of the frequency, which depends on the dielectric constant of the soil. For the implementation of the sensor probe, three printed circuit boards (PCBs) for the sensor boards were designed using Altium Designer and then ordered; an STM32 Nucleo board with low power microcontroller was used and the software was implemented in STM32CubeIDE. The lifetime of the sensor probe was calculated for different duty-cycles. With a duty-cycle of 15 minutes, where the sensor probe is active for 1 minute and in sleep mode for 14 minutes, the lifetime of the sensor probe would only be 16 days. With a duty-cycle of 120 minutes instead, with the sensor probe being active for 1 minute, the lifetime is increased to 130 days (less than4,5 months). Due to challenges with the high frequency capacitive sensor, the multi-depth sensor probe does not fully work, and thus cannot be tested with a large testbed. Further work needs to be conducted on the high frequency capacitive sensor and the communication with the gateway.
3

Mikrotalasni senzori vlažnosti zemljišta zasnovani na komponentama sa distribuiranim parametrima / Microwave soil moisture sensors based on distributed elements

Kitić Goran 04 October 2016 (has links)
<p>Senzori vlažnosti zemljišta su od ključnog značaja za sisteme za navodnjavanje kojima je moguće uvećati prinose u proseku za 79%. U okviru ove disertacije razvijena su dva senzorska rešenja za merenje vlažnosti zemljišta. Prvi senzor je namenjen određivanju vlažnosti uzoraka zemljišta u neporemećenom stanju. Rešenje je nastalo nadogradnjom standardne opreme za uzorkovanje zemljišta. Za pomenuti senzor konstruisana je kalibraciona kriva kojom je moguće odrediti vlažnost zemljišta sa relativnom greškom ne većom od 2.5%. Drugo senzorsko rešenje je fabrikovano u LTCC tehnologiji, malih je dimenzija i namenjeno je primeni na terenu. Glavna prednost ovog senzora je da na njega ne utiče provodnost zemljišta koja je usko povezana sa tipom zemljišta. Predloženi senzor je testiran na dva uzorka zemljišta različitog hemijskog sastava. Rezultati merenja su pokazali da tip zemljišta nema uticaj na odziv senzora. Ostvarena relativna greška u odnosu na pun merni opseg iznosi 5.36%.</p> / <p>Soil moisture sensors are of great importance for the irrigation systems that<br />are able to increase the yiel on avarage of 79%. Within this thesis two sensor<br />solutions have been developed. The first sensor, which is intended for<br />laboratory use, has been designed by upgrading existing sampling<br />equipment. The constructed calibration curve for this type of sensor that can<br />be used for soil mositure determination with relative error not larger than<br />2.5% with respect to full scale output. The second sensor solution is<br />designed to be used in the field. It is fabricated in LTCC technology and it is<br />charaterized by small overall dimensions. The main advantage of this sensor<br />is that it is immune to the soil electrical conductivity which is closely related to<br />the soil type. Proposed sensor is tested on two soil sample of different<br />chemical composition and the results have shown that the type of soil does<br />not influence the sensor response. The relative error with the respect of full<br />scale output was only 5.36 %.</p>
4

Soil Moisture Sensing in Mining Waste Rock: Comparing Calibration Curves of Multiple Low-Cost Capacitance Sensors and a Single TDR Sensor / Mätning av vatteninnehåll i gruvavfall: En jämförelse av kalibreringskurvor för flera billiga kapacitanssensorer och en enda TDR-sensor

Jørgensen, Rasmus January 2022 (has links)
Measuring soil moisture content (SMC) in mining waste rock is important for assessing and modelling hydrological processes which influence pollutant release. Here, an experimental setup containing mining waste rock is established to compare the performance of 4 Arduino capacitance moisture sensors to one single Time Domain Reflectometry (TDR) sensor. Furthermore, the performance of these sensors is evaluated in both sieved and unsieved mining waste rock. Fitted calibration curves are provided for both the TDR- and Arduino-sensors individually and in combination. These calibration curves are evaluated using the RMSE and R 2 of each curve and compared between sensors and soil texture. It is concluded that using more capacitance sensors significantly improves the fit statistics of the calibration curves and that using at least 4 capacitance sensors can enhance calibration curve fitting. For both the TDR and capacitance sensors, the calibration curves in sieved soil provided the best fit, meaning that soil specific calibration of sensors is recommended. On a sensor individual basis, the temporal precision of the TDR sensor was superior to each individual capacitance sensor. Use of 4 or more Arduino capacitance sensors may especially be justified in circumstances where the spatial variability of SMC is addressed by executing a large number of measurements. Here, the feasibility of the Arduino sensor system means that the use of these low-cost sensors, despite their reduced temporal precision, can be upscaled at relatively small costs.
5

Sistema de supervisão e controle de irrigação utilizando técnicas de inteligência artificial

Fontes, Ivo Reis [UNESP] 18 December 2003 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:31:35Z (GMT). No. of bitstreams: 0 Previous issue date: 2003-12-18Bitstream added on 2014-06-13T19:41:53Z : No. of bitstreams: 1 fontes_ir_dr_botfca.pdf: 6105136 bytes, checksum: 23e89a651c99005b7465ec2d3aae3e9b (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / O presente trabalho teve como objetivo a configuração de um sistema de supervisão e controle de irrigação utilizando técnicas de inteligência artificial. De acordo com metodologia adotada, o seu desenvolvimento foi realizado em três fases distintas. Inicialmente foram construídos os seguintes módulos de hardware: Unidade de Sensores, Unidade Concentradora de Dados e Sensor de Umidade do Solo do tipo Capacitivo. Em seguida foi criada uma aplicação através do programa de supervisão e controle do tipo SCADA, Elipse PRO, dedicada à supervisão e controle de uma casa de vegetação. Na fase final foram coletados os dados necessários para o treinamento de uma rede neural artificial que é parte integrante do sensor de umidade de solo do tipo capacitivo. Os resultados obtidos através de um conjunto de teste de medidas demonstraram que o sensor capacitivo apresenta comportamento e desempenho similares ao do sensor de do tipo TDR, o que permite concluir que esta solução pode representar uma significativa contribuição, viabilizando a implantação de sistemas de supervisão e controle em processos de irrigação com uma relação custo/benefício em níveis aceitáveis. / The present work had as objective the configuration of a supervisory and control system for irrigation using artificial intelligence techniques. In agreement with adopted methodology, its development was accomplished in three different phases. Initially the following hardware modules were built: Sensors Unit, Data Concentrator Unit and a Capacitive type Soil Moisture Sensor. Soon afterwards an application was created through the supervisory and control program of the type SCADA, Ellipse PRO, dedicated to the supervision and control of a green house. In the final phase the necessary data were collected for the training of an artificial neural network that is integral part of the capacitive type soil moisture sensor. With the application developed in the Ellipse PRO a database was created for the training of the artificial neural network, containing a group of 2440 measures of soil moisture obtained through a capacitive type sensor and a TDR type sensor. The results obtained through a group of test of measures demonstrated that the capacitive sensor presents a similar behavior to the of the TDR type sensor, the one that allows conclude that this solution can represent a significant contribution, making possible the implantation of supervisory and control systems in irrigation processes with a cost/benefit relationship in acceptable levels.
6

Applicability of Soil Moisture Sensors in Determination of Infiltration Rate

K C, Milan January 2017 (has links)
No description available.
7

Moisture measurements in concrete and characterization using impedance spectroscopy and RC network circuits

Theophanous, Theophanis 08 August 2008 (has links)
The importance of moisture in concrete is unquestionable. However, quantifying the moisture in concrete is very difficult as concrete microstructure water interactions are not well understood. Concrete is a very complex material spanning the range from the atom to the civil infrastructure. It is the medium that controls moisture at the FRP/concrete interface. Concrete is also a composite material at the level of concrete/rebar, aggregate/sand/cement paste and at the hydration product level. Water is vital in concrete microstructure development, properties and concrete durability. A moisture sensor based on the dielectric and resistive properties of cement paste was developed. Impedance spectroscopy techniques are used to explore the moisture behavior in relation to dielectric and resistive properties of the sensors. The sensor capacitive response is frequency dependent and it has been described with a multi-linear curve. Resistance values are related to capacitance through a power Law. Both the capacitance/moisture and capacitance/resistance behaviors were observed in all four cement/sand/aggregate mixtures considered. Although the dielectric constants of water and dry cement paste are not frequency dependent with in the 400 kHz and 10 MHz frequencies considered, the effective dielectric constant of the mixture is frequency dependent Mixing rules cannot predict the effective dielectric constant of the dielectric medium used in the sensors. Impedance analysis indicated also multiple time constants exist within the cement paste. Using the observation from the experimental results in conjunction to the high conductivity of cement pore solution a random R-C network model was developed to explore the impedance behavior of cement paste. / Ph. D.
8

Sistema de supervisão e controle de irrigação utilizando técnicas de inteligência artificial /

Fontes, Ivo Reis. January 2003 (has links)
Orientador: José Angelo Cagnon / Banca: Nelson Miguel Teixeira / Banca: Edwin Avolio / Banca: Diógenes Pereira Gonzaga / Banca: André Torre Neto / Resumo: O presente trabalho teve como objetivo a configuração de um sistema de supervisão e controle de irrigação utilizando técnicas de inteligência artificial. De acordo com metodologia adotada, o seu desenvolvimento foi realizado em três fases distintas. Inicialmente foram construídos os seguintes módulos de hardware: Unidade de Sensores, Unidade Concentradora de Dados e Sensor de Umidade do Solo do tipo Capacitivo. Em seguida foi criada uma aplicação através do programa de supervisão e controle do tipo SCADA, Elipse PRO, dedicada à supervisão e controle de uma casa de vegetação. Na fase final foram coletados os dados necessários para o treinamento de uma rede neural artificial que é parte integrante do sensor de umidade de solo do tipo capacitivo. Os resultados obtidos através de um conjunto de teste de medidas demonstraram que o sensor capacitivo apresenta comportamento e desempenho similares ao do sensor de do tipo TDR, o que permite concluir que esta solução pode representar uma significativa contribuição, viabilizando a implantação de sistemas de supervisão e controle em processos de irrigação com uma relação custo/benefício em níveis aceitáveis. / Abstract: The present work had as objective the configuration of a supervisory and control system for irrigation using artificial intelligence techniques. In agreement with adopted methodology, its development was accomplished in three different phases. Initially the following hardware modules were built: Sensors Unit, Data Concentrator Unit and a Capacitive type Soil Moisture Sensor. Soon afterwards an application was created through the supervisory and control program of the type SCADA, Ellipse PRO, dedicated to the supervision and control of a green house. In the final phase the necessary data were collected for the training of an artificial neural network that is integral part of the capacitive type soil moisture sensor. With the application developed in the Ellipse PRO a database was created for the training of the artificial neural network, containing a group of 2440 measures of soil moisture obtained through a capacitive type sensor and a TDR type sensor. The results obtained through a group of test of measures demonstrated that the capacitive sensor presents a similar behavior to the of the TDR type sensor, the one that allows conclude that this solution can represent a significant contribution, making possible the implantation of supervisory and control systems in irrigation processes with a cost/benefit relationship in acceptable levels. / Doutor
9

Home Irrigation System : Using Internet Control

Girajala, Manikanta Satish Kumar, Vatsavayi, Sri Satyasai, Medavarapu, Veera Bhadra Prathith Kumar January 2021 (has links)
In this report an illustration of a Home Irrigation System Using Internet Control by Arduino is proposed. This automated system for irrigation identifies the moisture content present in soil and automatically toggles the switching off pump when the power is supplied. An appropriate usage of irrigation system is necessary and it is essential to maintain suitable water content and avoid shortage of water due to lack of rain and spontaneous use of water, to avoid wastage of water. Due to this reason, this home irrigation system can be used to monitor soil moisture. Which is very useful in all climatic conditions. This project aims at reducing excessive and uncontrolled water usage as well as maintaining moisture content of the soil to get healthy irrigation. Home Irrigation System can be used for saving time using monitoring device thus minimizing human effort. Overall, the project achieved its primary goal to avoid the wastage of water while maintaining the moisture content of the soil with less delay in the processing time.
10

Development of Free-Standing Interference Films for Paper and Packaging Applications

Holmqvist, Johan January 2008 (has links)
<p>The newfound capability of creating moisture sensitive interference multilayered thin films (MLTFs) comprising microfibrillated cellulose and polymers has not previously been possible to implement on surfaces other than silicon wafer strips. Being able to incorporate interference MLTFs on fibre-based materials would introduce the possibility for new applications within authentication, sensing and customer attraction for the paper and packaging industry. By using trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane we were able to hydrophobically modify silicon substrates, enabling interference MLTF lift-off and thus the creation of free-standing MLTFs of approximately 400 nm thickness. Contact dried MLTFs approximately 250 nm thick, were successfully transferred to copy- and filter paper as well as to cellulose-based dialysis membranes. We can also report on the successful synthesis of interference MLTFs directly on a fibre composite material and on aluminium. Initial tests of a method to quantify the pull-off conditions of the MLTFs from the fluorinated surfaces using the Micro Adhesion Measurement Apparatus showed promising results.</p>

Page generated in 0.0833 seconds