• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of Water Splitting Devices via Molecular Engineering

Li, Fusheng January 2016 (has links)
Converting solar energyto fuels such as hydrogen by the reaction of water splitting is a promising solution for the future sustainable energy systems. The theme of this thesis is to design water splitting devices via molecular engineering; it concerns the studies of both electrochemical-driven and photo-electrochemical driven molecular functional devices for water splitting. The first chapter presents a general introduction about Solar Fuel Conversion. It concerns molecular water splitting catalysts, light harvesting materials and fabrication methods of water splitting devices. The second chapter describes an electrode by immobilizing a molecular water oxidation catalyston carbon nanotubes through the hydrophobic interaction. This fabrication method is corresponding to the question: “How to employ catalysts in functional devices without affecting their performances?” In the third chapter, molecular water oxidation catalysts were successfully immobilized on glassy carbon electrode surface via electrochemical polymerization method. The O-O bond formation pathways of catalysts on electrode surfaces were studied. This kinetic studyis corresponding to the question: “How to get kinetic information of RDS whena catalyst is immobilized on the electrode surface?” Chapter four explores molecular water oxidation catalysts immobilized on dye-sensitized TiO2 electrodeand Fe2O3 semiconductor electrode via different fabrication methods. The reasons of photocurrent decay are discussed and two potential solutions are provided. These studies are corresponding to the question: “How to improvethe stability of photo-electrodes?” Finally, in the last chapter, two novel Pt-free Z-schemed molecular photo-electrochemical cells with both photoactive cathode and photoactive anode for visible light driven water splitting driven were demonstrated. These studies are corresponding to the question: “How to utilizethe concept of Z-schemein photosynthesis to fabricate Pt-free molecular based PEC cells? / <p>QC 20160129</p>
2

Réduction photo et électro-assistée sélective du dioxyde de carbone sur des catalyseurs moléculaires / Electro and photo-assisted carbon dioxide reduction on molecular catalysts

Stanbury, Matthew 01 December 2016 (has links)
Cette thèse s’inscrit dans le contexte général de la valorisation du CO2 et relate une recherche fondamentale, visant à trouver de nouveaux catalyseurs moléculaires pour réaliser la conversion du CO2. Les résultats obtenus apportent des connaissances au vu de développer un processus efficace et sélectif de catalyse pour la réduction du CO2. Le premier Chapitre présente d’abord des généralités sur l'utilisation du CO2 et fait un point bibliographique sur les catalyseurs moléculaires pour l’électro et la photo-réduction du CO2. Cette courte revue montre la grande variété de complexes de métaux de transition utilisés comme catalyseurs, en particulier ceux à base de rhénium. Ensuite une analyse ciblée sur l'état de l’art de la réduction du CO2 par des catalyseurs moléculaires du type complexes carbonyle de manganèse est relatée. Dans le Chapitre II, la discussion débute par un bref aperçu de la recherche développée relative à de nouveaux complexes de formule générale: [Mn(L)(CO)3(X)] (X = Br, n = 0 ou CH3CN, n = 1; L = terpyridine et dérivés). L'intérêt de ces complexes est double, car leurs propriétés physico-chimiques leur confèrent des applications potentielles en catalyse de réduction du CO2, et dans le domaine des molécules pour le relargage contrôlé de CO. Le développement de nouveaux complexes à base de ligands dérivés de la terpy est l'une des routes qui a été choisie pour l'optimisation et l'amélioration des performances des catalyseurs. Dans ce contexte, de nouveaux complexes de Mn ont été synthétisés, leurs propriétés photo- et électrochimiques étudiées en détail, avant de tester leur activité vis-à-vis de la réduction catalytique du CO2. Le résultat le plus remarquable, provient de la capacité unique de ces espèces à libérer de façon contrôlée l'un des ligands carbonyle, ce qui a conduit à la découverte de complexes originaux de Mn à deux ligands carbonyle, catalyseurs sélectifs pour la réduction du CO2, mais aussi de molécules applicables pour le relargage de faibles quantités de CO à des fins thérapeutiques. Le chapitre III couvre l'étude du complexe [Mn(phendione)(CO)3(X)]n+ (X = Br, n = 0 ou CH3CN, n = 1). Ce complexe a été synthétisé en ayant comme objectif l’obtention de catalyseurs solubles en milieux aqueux. Bien que l’objectif visé soit ambitieux, il a été constaté que cette espèce ne présente pas d'activité catalytique pour la réduction de CO2 en milieu aqueux. Malgré tout, son activité électrocatalytique a été mise en évidence en milieux hydro-organiques et son application en photocatalyse, en milieux organiques, s’est avérée prometteuse. Ce travail a permis d’acquérir une meilleure compréhension des propriétés physicochimiques et des mécanismes catalytiques d’un complexe de Mn contenant un ligand redox-actif. Les résultats présentés dans le chapitre IV sont basés sur l’étude d’une autre famille de nouveaux complexes carbonyle de Mn. L’étude a été concentrée principalement sur le complexe [Mn (pyperNH)(CO)3(CH3CN)]+. Le ligand pyperNH, de par son système aromatique et de sa fonction NH, joue un rôle majeur et est redox-actif. Après une partie dédiée à la synthèse et à la caractérisation, ce chapitre consacre une part importante au rôle que peuvent jouer différents paramètres expérimentaux sur l’efficacité de la réaction catalytique de la réduction du CO2. Les complexes de Mn, décrits dans ce chapitre, possèdent des propriétés rédox remarquables. Une étude préliminaire de leur activité catalytique pour la réduction du CO2 a permis de donner une première hypothèse sur le rôle que pourrait avoir la fonction N-H du ligand sur le mécanisme de la catalyse et sur la sélectivité de la réaction. Cette recherche a été étendue au-delà du ligand pyperNH, à une nouvelle famille de complexes de ligands de structures similaires, les résultats préliminaires rapportés sont très originaux et prometteurs et ouvrent de nouvelles perspectives. / The general context of this thesis is on CO2 valorisation, and recounts fundamental research aimed at finding new molecular catalysts in order to achieve CO2 conversion. The results obtained provide additional knowledge in view of developing an efficient and selective catalytic CO2 reduction process. The first chapter begins with the general picture of CO2 utilisation and contains a bibliographical overview on the use of molecular catalysts for CO2 photo- and electroreduction. This short review demonstrates the wide variety of transition metal complexes used as catalysts, in particularly those based on rhenium. An analysis on the current state of CO2 reduction research using molecular catalyst complexes of the manganese carbonyl type is then reported. In Chapter II, the discussion begins with a brief overview of the research developed during this thesis relating to new complexes of the general formula: [Mn(L)(CO)3(X)] (X = Br, n = 0 ou CH3CN, n = 1; L = terpyridine derivatives). The interest in these complexes is twofold, as their physico-chemical properties give them potential catalytic CO2 reduction applications, as well as applications in the field relating to controlled CO release molecules. Developing new complexes based on ligands derived from terpy is one of the main routes that were chosen for catalyst performance optimisation and improvement. In this context, Mn complexes were synthesised, their photo- and electrochemical properties were studied in detail, before testing their activity with respect to catalytic CO2 reduction. The most remarkable result comes from the unique ability of these species to release one of their carbonyl ligands in a controlled fashion, which led to the discovery of novel Mn dicarbonyl complexes which are selective catalysts for CO2 reduction, and also to new molecules which are applicable in the release of small quantities of CO for therapeutic purposes.Chapter III covers the study of the complex [Mn(phen-dione)(CO)3(X)]n+ (X = Br, n = 0 ou CH3CN, n = 1). This complex was synthesised with the aim in mind of obtaining complexes soluble in aqueous media. While this objective was ambitious, it was soon found that these species showed no catalytic activity for CO2 reduction in the target aqueous medium. Nevertheless, electrocatalytic activity was demonstrated in hydro-organic media and photocatalytic applications in organic media proved promising. This work allowed us to gain a better understanding of the physicochemical properties and catalytic mechanisms of a Mn complex containing a redox-active ligand.The results presented in Chapter IV are based on the study of another new Mn carbonyl complex family. The study concentrated mainly on the complex [Mn(pyperNH)(CO)3(CH3CN)]+. The pyperNH ligand, with its aromatic system and NH functional group, plays a major role and is redox-active. After a section dedicated to its synthesis and characterisation, this chapter devotes a large part to the role that different experimental parameters can play on the efficiency of the catalytic CO2 reduction reaction. The Mn complexes described in this chapter have remarkable redox properties. A preliminary study of the catalytic activity of these complexes for CO2 reduction has allowed us to have an initial idea about the potential role of the N-H functional group of the ligand on the catalytic mechanism and reaction selectivity. This research was extended beyond the pyperNH ligand into a complex class of similar ligand structures, and the preliminary results obtained are original and promising, and open the way towards new perspectives.
3

Étude électrochimique de complexes moléculaires à base de métaux de transition non-précieux pour applications énergétiques / Electrochemical study of molecular complexes of non-precious transition metals for energy applications

Al Cheikh, Joumada 29 January 2019 (has links)
L’électrochimie devient incontournable dans les nouvelles technologies de stockage et de conversion de l’énergie. La réaction de dégagement de dihydrogène constitue aujourd’hui une réaction à fort intérêt sociétal qui est au cœur des nouvelles technologies permettant l’élaboration de systèmes pour la conversion de l’énergie. Cependant, des problématiques liées à l’utilisation de certains métaux nobles (le platine notamment) en tant que catalyseurs restent encore à résoudre. Ce travail de thèse s’inscrit dans les thématiques scientifiques de l’équipe de Recherche et d’Innovation en Electrochimie pour l’Energie (ERIEE) qui s’intéresse depuis plusieurs années à la substitution de ces métaux nobles par l’utilisation de catalyseurs moléculaires constitués de composés organiques contenant des métaux de transition comme centre électro-actif pour application dans les électrolyseurs industriels. Ce travail de thèse se focalise sur l’étude d’une famille de complexes moléculaires à base de métaux de transition (Co ou Fe), les clathrochélates, caractérisés par différentes structures chimiques. Le choix des ligands de ces complexes ainsi que l’étude des processus de fonctionnalisation sur des substrats ad hoc, sont des éléments déterminants dans l’appréhension des performances électro-catalytiques obtenues.Ces électro-catalyseurs ont été étudiés à la fois en solution (phase homogène) et fonctionnalisés à la surface d’électrodes solides. Leurs propriétés physico-chimiques ainsi que leurs performances électro-catalytiques vis-à-vis de la réaction de dégagement d’hydrogène, ont été caractérisés de façon systématique.La microscopie électrochimique à balayage (SECM) a notamment permis d'effectuer une caractérisation à l’échelle locale des propriétés électro-catalytiques des électrodes modifiées. / Electrochemistry is becoming a major field in new energy storage and conversion technologies. Nowadays, the hydrogen evolution reaction (HER) is a reaction of great societal interest, which is at the heart of new technologies enabling the development of systems for the conversion of energy. However, some issues related to the use of noble metals (platinum, in particular) as catalysts have not been solved yet. This thesis is part of the scientific approach of the Research and Innovation in Electrochemistry for Energy (ERIEE) research group which has been interested for several years in the substitution of these noble metals by the use of transition metal based electro-catalysts. These molecules consist of organic compounds containing transition metals as an electro-active center for application in industrial electrolysers. This thesis focuses on the study of a family of molecular complexes based on transition metals (Co or Fe), the so-called clathrochelates, characterized by different chemical structures. The choice of the ligands constituting these complexes as well as the study of their functionalization processes on ad hoc substrates, constitute key elements in the apprehension of the resulting electro-catalytic performances.These electro-catalysts were studied both in solution (homogeneous phase) and functionalized at the surface of solid electrodes. Their physico-chemical properties as well as their electrocatalytic turnover for the hydrogen evolution reaction, have been systematically characterized.In particular, scanning electrochemical microscopy (SECM) allowed for the characterization of the electrocatalytic properties of modified electrodes at the local scale.
4

Utilizing NAD+/NADH Analogs for the Solar Fuel Forming Reductions

Ilic, Stefan 08 August 2017 (has links)
No description available.
5

Systèmes moléculaires pour la production d'hydrogène photo-induite dans l'eau associant des catalyseurs de cobalt à un photosensibilisateur de ruthénium ou un colorant organique / Molecular systems for photo-induced hydrogen production from water involving cobalt catalysts and a ruthénium photosensitizer or an organic dye

Gueret, Robin 04 December 2017 (has links)
Les travaux de cette thèse sont centrés sur le développement de systèmes moléculaires en solution homogène pour la production photocatalytique de dihydrogène dans l'eau utilisant des catalyseurs de cobalt à ligands pentadentate tétrapyridinique ou tétra- et pentaaza macrocycliques. Associés au photosensibilisateur et à l’ascorbate comme donneur d’électron sacrificiel, les complexes à ligands macrocycliques présentent d’excellentes performances pour la production d’H2, bien supérieures à celles des complexes à ligands polypyridiniques en termes d’efficacité et de stabilité, en raison de la grande stabilité de leur état réduit «Co(I)». Enfin, [Ru(bpy)3]2+ a pu être substitué par un colorant organique très robuste du type triazatriangulénium conduisant à un système photocatalytique encore plus performant. Ces résultats démontrent que les colorants organiques sont une alternative viable aux photosensibilisateurs à base de métaux nobles, même en milieu aqueux acide. / The work of this manuscript is focused on the design of molecular systems in homogeneous solution for photocatalytic production of molecular hydrogen in water using cobalt catalysts with pentadentate tetrapyridinic and tetra- and pentaza macrocyclic ligands. In association with [Ru(bpy)3]2+ as photosensitizer and sodium ascorbate as sacrificial electron donor, the macrocycle based catalysts display high performances for H2 production, far exceeding those of the polypyridine based catalysts, both in terms of activity and stability, because of the stability of their reduced state «Co(I)». Finally, [Ru(bpy)3]2+ was successfully substituted with a robust organic dye belonging to the triazatriangulenium family, leading to an even more efficient photocatalytic system. These results demonstrate well that organic dyes are a truly efficient alternative to noble metal based photosensitizers, even in acidic aqueous medium.

Page generated in 0.0626 seconds