• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 2
  • Tagged with
  • 17
  • 17
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solar Fuel Synthesis via Photoelectrochemistry: Understanding and Controlling Interfaces

He, Yumin January 2019 (has links)
Thesis advisor: Udayan Mohanty / Solar fuel synthesis via photoelectrochemistry represents a promising strategy to achieve solar energy conversion and storage. The improvement of photoelectrochemical water splitting performance lies in choosing suitable photoelectrode materials, followed by strategic optimization of their properties. Among those properties, the interface between the semiconductors and electrolyte is of paramount importance, yet it is still not well understood. In my dissertation, I will mainly focus on understanding and controlling those interfaces, with two study platforms. The first study platform is tantalum nitride (Ta3N5), which is an attractive photoanode material with good optoelectronic properties. However, it suffers from low photovoltage despite of the high theoretical expectation and rapid performance decay when it is used for water oxidation. With the help of various characterization methods, it was found that water or hydroxyl group adsorption on the surface as well as the self-limited surface oxidation during water oxidation led to the positive shift of band edge positions and Fermi level, accompanied with increase of charge transfer resistance on the surface. In consequence, decrease of photovoltage and photocurrent was observed. Two different strategies were developed. The first was to fully isolate Ta3N5 from water with the deposition of uniform protection layer through atomic layer deposition. The second strategy utilized the reaction between Ta¬3N5 and co-catalyst instead of water, which led to the formation of a photo-induced interface that favored the desired chemistry instead of side reactions. The second study platform is a Si buried junction protected by GaN. By tuning the loading amount of Pt nanoparticles on GaN surface, both the photocurrent density and photovoltage of the photocathode was improved. With detailed spectroscopic study, it was implied that both charge transfer kinetics and interfacial energetics could be influenced by the loading of Pt on the surface. / Thesis (PhD) — Boston College, 2019. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
2

Designing Electrochemical Systems for Energy Conversion

Obata, Keisuke 06 1900 (has links)
Electrochemical water splitting to hydrogen and oxygen is an attractive approach to store and convert intermittent renewable energy sources. Energy efficient, cost effective and durable electrochemical systems are highly required. Firstly, CeOx coated oxygen evolution electrocatalysts were developed to improve the stability. Unique permselectivity of the CeOx layer was disclosed, which helps to prevent dissolution of active metal site. Because oxygen evolution reaction requires a higher overpotential than hydrogen evolution reaction, kinetically facile oxidation of soluble redox ions was proposed as an alternative anodic reaction, in which the oxidized redox ions can be used for succeeding homogeneous reactions, such as treatment of H2S. How to tune the thermodynamics and the diffusion of candidate redox ions is discussed for a desired application. In addition to the anodic reaction, cathodic hydrogen evolution reaction has to be optimized. To maximize hydrogen evolution performance in near-neutral pH buffered conditions, concentration overpotentials from local pH and hydrogen on a Pt cathode are distinguished by mass transport modelling. Finally, stand-alone module was developed to perform solar-driven redox-mediated H2S splitting to H2 and S under natural solar irradiation.
3

Functionalized Metal-Organic Frameworks for Water Oxidation Catalysis

Lin, Shaoyang 02 May 2019 (has links)
Increasing energy demand will not only aggravate global warming, but also cause fossil fuels shortage in the near future. Solar energy is an infinite green energy resource that can potentially satisfy our energy usage. By utilizing solar energy to drive reactions like water splitting, solar fuels system are able to produce valuable energy resource. Catalysts for water oxidation are the essential component of water splitting cells which have been intensively studied. As a solid state porous crystalline material with synthetic tunability, Metal-organic framework (MOF) is a promising platform for water oxidation catalysis due to its outstanding properties. Herein, we aimed to develop molecular catalysts incorporated MOF for water oxidation and study the reaction mechanism. Chapter 1 introduces the background of water oxidation and previous research on ruthenium nuclear water oxidation catalysts (WOCs). The reaction mechanism of binuclear and mononuclear ruthenium WOCs was briefly summarized. Opportunities for the design and the synthesis of MOF based WOCs were then discussed. Lastly, studies about MOF based WOCs were categorized based on the difference of the WOCs active site location in frameworks. Water oxidation catalyst [Ru(dcbpy)(tpy)OH2]2+ (RuTB) was incorporated into UiO-67 MOF (resulting materials denoted as RuTB-UiO-67) for chemical water oxidation in Chapter 2. Differences of catalytic reaction behavior between homogeneous RuTB and RuTB incorporated in MOF were examined. Based on MOF particle size dependent catalysis reaction experiments, in-MOF reactivity was anticipated to be primarily arose from redox hopping between RuTB active sites in the framework. In Chapter 3, RuTB-UiO-67 MOF thin films grown on conducting FTO substrate (RuTB-UiO-67/FTO) were synthesized to test their catalytic activity of electrochemical water oxidation. Electrochemical behavior of RuTB-UiO-67/FTO was found to be consistent with homogeneous RuTB by various electrochemistry study and in-situ X-ray absorption spectroscopy characterization. Scan-rate-dependent voltammetry study demonstrated the homogeneous distribution of electrochemical active sites throughout the MOF thin film. Diffusion controlled redox hopping was attributed to be the main charge transfer pathway during catalysis. In order to pursue photo-induced water splitting system, we further our study by investigating MOF based photoelectrochemical catalysis in Chapter 4. Photoelectrochemical alcohol oxidation was chosen as the preliminary-stage study towards the more challenging goal, photoelectrochemical water oxidation. Electron transfer processes of the photosensitizer ([Ru(bpy)2(dcbpy)]2+) and the catalyst (RuTB) doped UiO-67 MOF were investigated with transient absorption spectroscopy analysis. Finally, the role of redox hopping in electrocatalysis by MOF was reviewed in Chapter 5. Pathways of charge transfer in electroactive MOF were first summarized. Redox hopping in MOF was then compared with previous studies on redox active polymer thin films. Lastly, factors that will affect the rate of redox hopping of MOF electrocatalyst were discussed. / Doctor of Philosophy / Solar energy is the most abundant renewable energy resource that can satisfy our energy demand. Solar fuel devices like water splitting systems can generate hydrogen as an environmental friendly energy source. However, the commercialization of water splitting system was hindered by one particular half reaction, water oxidation. Therefore, the development of efficient and stable water oxidation catalysts is critical. Metal-organic framework (MOF) as a porous crystalline material with large surface area is a great platform for stable and reusable solid state water oxidation catalyst. Herein, we incorporated ruthenium based molecular water oxidation catalysts into a MOF denoted as UiO-67. The catalysts doped MOF was able to oxidize water chemically and electrochemically. Furthermore, light absorber molecules were introduced to the MOF to test their catalytic ability towards photoelectrochemical alcohol oxidation. It provides valuable information for the more challenging study of MOF based photoelectrochemcal water oxidation catalysts.
4

Estudo experimental do processo de oxidação do ferro com vapor de água para a produção de gás hidrogênio. / Experimental study of iron oxidation process with water vapor to produce hydrogen gas11.

Goto, Tiago Gonçalves 11 August 2016 (has links)
Neste trabalho, foi estudado a oxidação do ferro com vapor d\'água em forno elétrico, para a produção de gás hidrogênio. Partindo-se da revisão bibliográfica, escolheu-se o ferro devido suas propriedades e por apresentar um bom rendimento, além disso o ferro é um material barato e abundante. Na estudo experimental foi três experimentos diferentes. No primeiro, o ferro foi oxidado em forno elétrico em temperaturas de 600 a 1000ºC, variando a cada 100ºC, e tempo fixado em 3 horas. Na segunda série de experimento, foi fixado a temperatura em 800ºC e variou a duração do processo de oxidação de 1 a 4 horas, com variação de 1 hora. E na terceira série de experimentos foi realizado a análise termogravimétrica para avaliação da cinética química do processo de oxidação. Os resultados dos experimentos indicaram a produção de gás hidrogênio em quantidades maiores em temperatura de 1000ºC. Além disso foi possível observar que a taxa de oxidação do ferro é maior durante a primeira hora de ensaio. A estimativa de hidrogênio produzido é de 0,9549 g/min -m2 em oxidação a 1000ºC. Já nos resultados da termogravimetria foi obtido a energia de ativação de 147 kJ/mol. / In this work was studied the oxidation of iron by steam in the electric furnace to produce hydrogen. The first step was the literature review and iron oxide was chose to be oxidized, due to its characteristics and good yield. Furthermore, the iron is a cheap and abundant in the earth. In the experimental studies was conducted three different experiments. The First one, the iron was oxidized in the electric furnace in the temperature range of 600 - 1000ºC with a variation of 100ºC and the oxidation time was fixed in 3 hours. The second experiment was conducted with fixed temperature of 800ºC and varied the oxidation time, the range of time was from 1 to 4 hours with a variation of 1 hour. The third experiment was the thermogravimetric analysis to study the chemical kinetics, with three different temperature, 600, 800 and 1000ºC. The result of studies showed that a high temperature the hydrogen production increased and decreased with low temperature. Furthermore, the high oxidation rate was observed in the first hour of the experiment. The hydrogen production was estimated in 0.9549 g/min - m2 at 1000ºC. Another result was the activation energy Ea= 147 kJ/mol.
5

Evanescent Photosynthesis: A New Approach to Sustainable Biofuel Production

Ooms, Matthew 26 November 2012 (has links)
Immobilization of photosynthetic cultures has been used to generate biofuels and high value compounds through direct conversion of CO2 and water using sunlight. Compared with suspended cultures, immobilized bacteria can achieve much higher densities resulting in greater areal productivity. Limitations exist however, on the density that can be reached without compromising access to light and other nutrients. In this thesis an optofluidic approach to overcoming the challenge of light delivery to high density cultures of cyanobacteria is described and proof of concept experiments presented. This approach uses optical waveguides to deliver light to cells through bacterial interaction with the evanescent field and is tailored to meet each cell's need for light and nutrients. Experiments presented here demonstrate biofilm proliferation in the presence of evanescent fields. Illumination of surfaces by surface plasmon enhanced evanescent fields is also shown to be an effective and potentially useful technique to grow biofilms within optofluidic architectures.
6

Evanescent Photosynthesis: A New Approach to Sustainable Biofuel Production

Ooms, Matthew 26 November 2012 (has links)
Immobilization of photosynthetic cultures has been used to generate biofuels and high value compounds through direct conversion of CO2 and water using sunlight. Compared with suspended cultures, immobilized bacteria can achieve much higher densities resulting in greater areal productivity. Limitations exist however, on the density that can be reached without compromising access to light and other nutrients. In this thesis an optofluidic approach to overcoming the challenge of light delivery to high density cultures of cyanobacteria is described and proof of concept experiments presented. This approach uses optical waveguides to deliver light to cells through bacterial interaction with the evanescent field and is tailored to meet each cell's need for light and nutrients. Experiments presented here demonstrate biofilm proliferation in the presence of evanescent fields. Illumination of surfaces by surface plasmon enhanced evanescent fields is also shown to be an effective and potentially useful technique to grow biofilms within optofluidic architectures.
7

Application and Study of Water Oxidation Catalysts and Molecular Dyes for Solar-Fuel Production

January 2013 (has links)
abstract: Developing a system capable of using solar energy to drive the conversion of an abundant and available precursor to fuel would profoundly impact humanity's energy use and thereby the condition of the global ecosystem. Such is the goal of artificial photosynthesis: to convert water to hydrogen using solar radiation as the sole energy input and ideally do so with the use of low cost, abundant materials. Constructing photoelectrochemical cells incorporating photoanodes structurally reminiscent of those used in dye sensitized photovoltaic solar cells presents one approach to establishing an artificial photosynthetic system. The work presented herein describes the production, integration, and study of water oxidation catalysts, molecular dyes, and metal oxide based photoelectrodes carried out in the pursuit of developing solar water splitting systems. / Dissertation/Thesis / Ph.D. Chemistry 2013
8

Estudo experimental do processo de oxidação do ferro com vapor de água para a produção de gás hidrogênio. / Experimental study of iron oxidation process with water vapor to produce hydrogen gas11.

Tiago Gonçalves Goto 11 August 2016 (has links)
Neste trabalho, foi estudado a oxidação do ferro com vapor d\'água em forno elétrico, para a produção de gás hidrogênio. Partindo-se da revisão bibliográfica, escolheu-se o ferro devido suas propriedades e por apresentar um bom rendimento, além disso o ferro é um material barato e abundante. Na estudo experimental foi três experimentos diferentes. No primeiro, o ferro foi oxidado em forno elétrico em temperaturas de 600 a 1000ºC, variando a cada 100ºC, e tempo fixado em 3 horas. Na segunda série de experimento, foi fixado a temperatura em 800ºC e variou a duração do processo de oxidação de 1 a 4 horas, com variação de 1 hora. E na terceira série de experimentos foi realizado a análise termogravimétrica para avaliação da cinética química do processo de oxidação. Os resultados dos experimentos indicaram a produção de gás hidrogênio em quantidades maiores em temperatura de 1000ºC. Além disso foi possível observar que a taxa de oxidação do ferro é maior durante a primeira hora de ensaio. A estimativa de hidrogênio produzido é de 0,9549 g/min -m2 em oxidação a 1000ºC. Já nos resultados da termogravimetria foi obtido a energia de ativação de 147 kJ/mol. / In this work was studied the oxidation of iron by steam in the electric furnace to produce hydrogen. The first step was the literature review and iron oxide was chose to be oxidized, due to its characteristics and good yield. Furthermore, the iron is a cheap and abundant in the earth. In the experimental studies was conducted three different experiments. The First one, the iron was oxidized in the electric furnace in the temperature range of 600 - 1000ºC with a variation of 100ºC and the oxidation time was fixed in 3 hours. The second experiment was conducted with fixed temperature of 800ºC and varied the oxidation time, the range of time was from 1 to 4 hours with a variation of 1 hour. The third experiment was the thermogravimetric analysis to study the chemical kinetics, with three different temperature, 600, 800 and 1000ºC. The result of studies showed that a high temperature the hydrogen production increased and decreased with low temperature. Furthermore, the high oxidation rate was observed in the first hour of the experiment. The hydrogen production was estimated in 0.9549 g/min - m2 at 1000ºC. Another result was the activation energy Ea= 147 kJ/mol.
9

Production and harvesting of volatile jet fuel precursors from Synechocystis sp. PCC 6803

Sjölander, Johan January 2019 (has links)
The world is currently faced with the enormous challenge of slowing down human triggered global warming. As the global energy demand increases, there is an urgent need for renewable and carbon-neutral fuel-sources. Isoprene and isobutene are crude-oil derived, short, volatile and reactive hydrocarbons that can be polymerised into longer chains to be used as jet fuel. Isoprene has previously been produced from the cyanobacterial strain Synechocystis sp. PCC 6803 but there has been no reported isobutene synthesis from any photosynthetic organism. This work aimed to synthesise isobutene in Synechocystis using a cytochrome P450 from Cystobasidium minutum with reported isobutene production capability. Substrate availability was to be provided through the insertion of two heterologous enzymes, IpdC from Salmonella typhimurium and PadA from Escherichia coli. Both IpdC and PadA were successfully expressed in Synechocystis but the functional activities of IpdC, PadA and the cytochrome P450 in Synechocystis remains undetermined. This project also had the aim to design and construct a photo-bioreactor and gas collection system capable of producing and harvesting isoprene directly from an engineered Synechocystis strain. Herein lies a description of a closed system photobioreactor connected to a cold-trap that was able to concentrate isoprene produced from Synechocystis to measurable amounts.
10

Modeling Three Reacting Flow Systems with Modern Computational Fluid Dynamics

Price, Ralph J. 13 April 2007 (has links) (PDF)
Computational fluid dynamics (CFD) modeling and analysis were used in three projects: solar CO2 conversion modeling, improved coal combustion modeling using STAR-CD, and premixed combustion modeling. Each project is described below. The solar CO2 conversion modeling project involved CFD simulations of a prototype solar CO2 converter that uses sunlight to dissociate CO2 into CO and O2. Modeling was used to predict the performance of this prototype converter using three CFD software packages, and involved predicting the flow, heat transfer, and chemical kinetics. Accuracy was determined by comparison of model predictions and experimental data. Parametric modeling studies were performed in order to better understand converter performance and limitations. Modeling analysis led to proposed operational and design changes meant to improve converter performance. Modeling was performed to quantify the effects of proposed design modifications and operational adjustments. Modeling was also used to study the effects of pressure, some geometric design changes, and changing from pure CO2 to a CO2/He mixture. The insights gained from these modeling studies have played a key role in improving the performance of this process. The second project involved the implementation of advanced coal models into STAR-CD, a commercial CFD program. These coal models were originally developed for PCGC-3, a code developed at Brigham Young University. This project involved modifying modern PCGC-3 coal combustion and gasification models so that they could be incorporated into STAR-CD. Models implemented included a coal set-up subroutine, and coal reactions models for devolatilization, char oxidation, and vaporization. Each implemented model was tested to verify its accuracy by comparison of model predictions with experimental data. All implemented coal submodels were validated by comparison between overall modeling predictions and experimental data. These implemented coal models increased the capability of STAR-CD to model coal combustion and gasification systems. The third project was to assemble previously obtained experimental data on lean, premixed natural gas combustion. Velocity, temperature, and species concentration measurements were previously taken throughout a laboratory-scale gas turbine combustor using advanced laser diagnostics. However, these data were taken by different investigators at BYU over the course of 10 years, and the data were scattered through several publications, theses, and dissertations. This third project was to compile these data into a central location for analysis and distribution. This data set is excellent for validation of any comprehensive combustion model, and is now accessible to the public.

Page generated in 0.0661 seconds