• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 15
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Molecular dynamics (MD) simulation study of low angle grain boundary (LAGB) mobility in pure Al and Al-Mg alloys

Rahman, Md. Jahidur 04 1900 (has links)
<p>Low angle grain boundary (LAGB) mobility is an essential parameter for developing the analytical models that describe the kinetics of recovery and predict the nucleation of recrystallized grains. The thesis is aimed at the molecular dynamics (MD) simulations study of LAGB mobility determination in pure Al and Al-Mg alloys. All the previous experimental studies reported that the presence of several defects, such as solutes and dislocations, retard the boundary motion and provide lower mobility. However, very few studies have been conducted in MD simulation to capture the interactions of those defects with the migrating grain boundary. This thesis is focused on providing complete understanding of LAGB determination along with a comprehensive explanation of solute and dislocation retarding effects on boundary motion.</p> <p>The LAGB mobility in pure Al was computed from two different MD techniques as a function of temperature and misorientation. Within numerical uncertainties, both techniques provide the same magnitude of mobility at 300K for 7.785<sup>o</sup> boundary and at 700K for 23.07<sup>o</sup> boundary. It was observed that ADF method is not applicable to determine LAGB mobility at high temperature due to failure of order parameter computation. The MD derived activation energy is found to be approximately ten times lower than the experimental observations.</p> <p>A strong solute pinning effect on boundary motion was observed at all misorientations and solute concentrations studied in Al-Mg alloys. An approximate linear relationship is found between the restraining force and the solute concentration in a distributed solute approach. In addition, the extrinsic dislocations are found to completely pin both 7.785<sup>o</sup> and 23.07<sup>o</sup> boundary motion at low driving forces in pure Al at 300K. The MD results do not reveal significant qualitative differences of the pinned boundary structure for the low and high angle boundaries and will be discussed in terms of the previous experimental observations.</p> / Doctor of Philosophy (PhD)
12

Estudos de mecanismos redox enzimáticos por eletroquímica e modelagem computacional / Studies of enzymatic redox mechanisms by electrochemistry and computational modeling

Callera, Welder Franzini Amaral [UNESP] 04 August 2017 (has links)
Submitted by WELDER FRANZINI AMARAL CALLERA null (weldercallera@hotmail.com) on 2017-08-28T21:25:00Z No. of bitstreams: 1 TESE - Welder F A Callera OK.pdf: 2324966 bytes, checksum: 979c488a0e341117b537d2d5a1ec77b2 (MD5) / Rejected by Luiz Galeffi (luizgaleffi@gmail.com), reason: Solicitamos que realize uma nova submissão seguindo a orientação abaixo: O arquivo submetido está sem a ficha catalográfica. A versão submetida por você é considerada a versão final da dissertação/tese, portanto não poderá ocorrer qualquer alteração em seu conteúdo após a aprovação. Corrija esta informação e realize uma nova submissão contendo o arquivo correto. Agradecemos a compreensão. on 2017-08-29T18:03:23Z (GMT) / Submitted by WELDER FRANZINI AMARAL CALLERA null (weldercallera@hotmail.com) on 2017-08-29T18:41:29Z No. of bitstreams: 1 TESE - Welder F A Callera OK.pdf: 2349810 bytes, checksum: 0b00e94e2ccb5b74f2521ba559748736 (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-08-29T18:53:53Z (GMT) No. of bitstreams: 1 callera_wfa_dr_araiq.pdf: 2349810 bytes, checksum: 0b00e94e2ccb5b74f2521ba559748736 (MD5) / Made available in DSpace on 2017-08-29T18:53:53Z (GMT). No. of bitstreams: 1 callera_wfa_dr_araiq.pdf: 2349810 bytes, checksum: 0b00e94e2ccb5b74f2521ba559748736 (MD5) Previous issue date: 2017-08-04 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Esta tese de doutoramento apresentou o entendimento de processos redox enzimáticos, detalhando o mecanismo envolvido na troca eletrônica, a qual resulta na formação de um produto, por catálise enzimática. Observou-se a influência de um eletrodo sob a ação de um potencial estacionário aplicado (E) na reação enzima/substrato. Realizou-se eletroanálises, como: Voltametria Cíclica (VC) e Espectroscopia de Impedância Eletroquímica (EIE), para a penicilinase. Os resultados obtidos dão indícios de que a reação enzimática se beneficia de determinados potenciais, pois o parâmetro utilizado, Rct, resistência à transferência de cargas, sugere que ocorre maior troca eletrônica em alguns potenciais ótimos (faixa de -0,3 a -0,5 V). A Simulação Molecular serviu para estudar o comportamento atomístico por métodos clássicos (Dinâmica Molecular – DM) para as condições impostas experimentalmente, esclarecendo o mecanismo de reação enzimática por métodos quânticos (DFT – Teoria do Funcional de Densidade) e híbridos (QM/MM), cabendo salientar que a penicilinase não pertence à classe das enzimas oxirredutivas. / This doctoral thesis presented the understanding of enzymatic redox processes, detailing the mechanism involved in the electronic exchange, which results in the formation of a product by enzymatic catalysis. The influence of an electrode under the action of an applied stationary potential (E) on the enzyme/substrate reaction was observed. Electroanalysis was performed, such as: Cyclic Voltammetry (VC) and Electrochemical Impedance Spectroscopy (EIS), for the penicilinase. The results obtained indicate that the enzymatic reaction benefits from certain potentials, since the parameter used, Rct, resistance to the transfer of charges, suggests that there is greater electronic exchange in some optimal potentials (range the -0.3 to -0.5 V). The Molecular Simulation was used to study the atomistic behavior by classical methods (Molecular Dynamics - DM) for experimentally imposed conditions, clarifying the mechanism of enzymatic reaction by quantum methods (DFT) and hybrids (QM/MM). That penicillinase does not belong to the class of oxidoreductive enzymes.
13

Untersuchung von Oxidationsprozessen an Siliziumnanodrähten mittels Molekulardynamik

Heinze, Georg 24 July 2017 (has links)
Siliziumnanodrähte (SiNWs) bieten eine aussichtsreiche Grundlage zur Entwicklung neuartiger nanoelektronischer Bauelemente, wie Feldeffekttransistoren oder Sensoren. Dabei ist insbesondere die Oxidation der Drähte interessant, weil diese weitreichenden Einfluss auf die elektronischen Eigenschaften der Bauelemente hat, die aus den SiNWs gefertigt werden. Die Größe der untersuchten Strukturen erfordert eine atomistische Analyse des Oxidationsprozesses. In der vorliegenden Arbeit wird der bisher wenig verstandene Beginn der Oxidation dünner Drähte molekulardynamisch simuliert, wobei als Potential ein reaktives Kraftfeld dient. Dabei wird sich intensiv mit dem Transfer elektrischer Ladungen zwischen Atomen unterschiedlicher Elektronegativitäten während der Simulationen auseinandergesetzt. Desweiteren werden Strukturen, die während der Oxidation von SiNWs der Orientierungen <100> und <110> bei Temperaturen von 300 K und 1200 K entstehen, untersucht. Ein Fokuspunkt dieser Untersuchungen ist die Analyse der Anzahl am Draht adsorbierter Sauerstoffatome während der frühen Oxidationsphase. Darüber hinaus wird die Dichte der entstehenden Strukturen beleuchtet. Dies geschieht mit einer hohen radialen Auflösung und erstmalig während der gesamten Simulation. Hierbei zeigt sich, dass während des Übergangs von kristallinem Silizium zu amorphem Siliziumdioxid zwischen den Siliziumatomen Sauerstoff eingelagert wird, die Kristallstruktur des Siliziums sich zunächst jedoch noch nicht auflöst. Dadurch entsteht ein charakteristisches Muster hoher und niedriger Dichten, das von der ursprünglichen Kristallstruktur des SiNW abhängt.:Abbildungsverzeichnis Abkürzungsverzeichnis Symbolverzeichnis 1 Einleitung 2 Einführung zu Siliziumnanodrähten 2.1 Kristallstuktur von Silizium 2.2 Ideale Siliziumnanodrähte 2.3 Herstellung von Siliziumnanodrähten 3 Grundlagen der Molekulardynamik 3.1 Newtonsche Axiome 3.2 Einige grundlegende Begriffe der statistischen Physik 3.3 Molekulardynamik 3.4 Reaktives Kraftfeld 3.5 Methoden zur Beschreibung des Ladungstransfers 3.6 Thermostat und Barostat 3.7 Large-scale Atomic/Molecular Massively Parallel Simulator 4 Entwicklung des Modellsystems 4.1 Ausgangsstruktur 4.2 Vorrelaxation 4.3 Ablauf der Oxidation 4.4 Verwendeter ReaxFF-Parametersatz 4.5 Optimierung der Zeitschrittweite 4.5.1 Modellsystem, Relaxation und Oxidation 4.5.2 Festlegung der Zeitschrittweite 4.6 Optimierung der Systemlänge 4.6.1 Modellsystem, Relaxation und Oxidation 4.6.2 Festlegung der Systemlänge 4.7 Einfluss des globalen, instantanen Ladungstransfers auf die Simulation 4.7.1 Festlegung des Einsetzabstands 4.7.2 Vergleich mit Daten von Khalilov et al. 5 Variation von System- und Einsetztemperatur sowie Drahtorientierung 5.1 Variation von System- und Einsetztemperatur 5.1.1 Untersuchung des Oxidationsgrads 5.1.2 Untersuchung von Dichten und Grenzflächenpositionen 5.2 Variation der Drahtorientierung 5.2.1 Untersuchung des Oxidationsgrads 5.2.2 Untersuchung von Dichten und Grenzflächenpositionen 6 Zusammenfassung und Ausblick 6.1 Zusammenfassung 6.2 Ausblick Literaturverzeichnis
14

Molekulardynamische Simulation der Oxidation dünner Siliziumnanodrähte: Einfluss von Draht- und Prozessparametern auf die Struktur

Heinze, Georg 28 January 2019 (has links)
Siliziumnanodrähte (SiNWs) bieten aufgrund ihrer exzellenten elektrostatischen Kontrollierbarkeit eine gute Grundlage für die Entwicklung neuartiger Bauelemente, wie rekonfigurierbarer Feldeffekttransistoren (RFETs). Da SiNWs durch die Oxidation gezielt verzerrt werden können und diese Verzerrung die Bandstruktur des Siliziums verändert, bietet der Oxidationsprozess eine Möglichkeit, die Leitungseigenschaften der RFETs zu modulieren und eine symmetrische Transfercharakteristik zu erhalten. Die Untersuchung von SiNWs mit Durchmessern im einstelligen Nanometerbereich bedarf eines atomistischen Ansatzes. In der vorliegenden Arbeit wird mit einem reaktiven Kraftfeld die initiale Phase der Oxidation dünner SiNWs molekulardynamisch simuliert. Gegenstand der Untersuchungen sind die Temperaturabhängigkeit der Oxidation von <110>-SiNWs mit Anfangsradien von 10.2 Å sowie das Oxidationsverhalten von <110>- und <100>-SiNWs mit Anfangsradien von 5.1 Å. Dabei wird neben dem Sauerstoffanteil im Simulationssystem und der radial aufgelösten Dichte auch das radial aufgelöste Verhältnis zwischen Sauerstoff- und Siliziumatomen während der gesamten Simulationsdauer untersucht und ein Zusammenhang zur Dichte festgestellt. Darüber hinaus wird bei 300 K erstmals eine Analyse der Verzerrungsentwicklung während der initialen Oxidationsphase durchgeführt, bei der sich sowohl für <110>-SiNWs als auch für <100>-SiNWs eine tensile Verzerrung im unoxidierten Drahtkern einstellt. Wie eine Analyse der partiellen radialen Verteilungsfunktion zeigt, kommt es zu dieser Verzerrung, weil während der Oxidation die Grundstruktur des Siliziums im Oxid erhalten bleibt, durch die Einlagerung des Sauerstoffs allerdings der Bindungsabstand erhöht wird. Dieser erhöhte Bindungsabstand wird durch Bindungen zu Siliziumatomen im Oxid auch Siliziumatomen im unoxidierten Kern aufgezwungen.:Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Abkürzungsverzeichnis Symbolverzeichnis 1. Einleitung 2. Theoretische Grundlagen 2.1. Molekulardynamik 2.2. Siliziumnanodrähte 2.3. Verzerrung und Verspannung 3. Modellsystem 3.1. Ausgangsstruktur 3.2. Vorrelaxation 3.3. Ablauf der Oxidation 4. Untersuchungsmethoden 4.1. Sauerstofffluenz, Oxidationsgrad und Oxidationsrate 4.2. Massendichte und Siliziumanteil 4.3. Radiale Verteilungsfunktion 4.4. Verzerrung 4.4.1. <110>-Draht 4.4.2. <100>-Draht 5. Ergebnisse und Diskussion 5.1. Festlegung des Einsetzintervalls 5.2. Temperaturvariation 5.2.1. Oxidationsgrad 5.2.2. Siliziumanteil 5.2.3. Massendichte 5.2.4. Radiale Verteilungsfunktion 5.3. Radius- und Orientierungsvariation 5.4. Verzerrung 6. Zusammenfassung und Ausblick 6.1. Zusammenfassung 6.2. Ausblick A. Festlegung des Einsetzintervalls Literaturverzeichnis
15

Atomistische Modellierung und Simulation des Filmwachstums bei Gasphasenabscheidungen

Lorenz, Erik E. 27 November 2014 (has links)
Gasphasenabscheidungen werden zur Produktion dünner Schichten in der Mikro- und Nanoelektronik benutzt, um eine präzise Kontrolle der Schichtdicke im Sub-Nanometer-Bereich zu erreichen. Elektronische Eigenschaften der Schichten werden dabei von strukturellen Eigenschaften determiniert, deren Bestimmung mit hohem experimentellem Aufwand verbunden ist. Die vorliegende Arbeit erweitert ein hochparalleles Modell zur atomistischen Simulation des Wachstums und der Struktur von Dünnschichten, welches Molekulardynamik (MD) und Kinetic Monte Carlo-Methoden (KMC) kombiniert, um die Beschreibung beliebiger Gasphasenabscheidungen. KMC-Methoden erlauben dabei die effiziente Betrachtung der Größenordnung ganzer Nano-Bauelemente, während MD für atomistische Genauigkeit sorgt. Erste Ergebnisse zeigen, dass das Parsivald genannte Modell Abscheidungen in Simulationsräumen mit einer Breite von 0.1 µm x 0.1 µm effizient berechnet, aber auch bis zu 1 µm x 1 µm große Räume mit 1 Milliarden Atomen beschreiben kann. Somit lassen sich innerhalb weniger Tage Schichtabscheidungen mit einer Dicke von 100 Å simulieren. Die kristallinen und amorphen Schichten zeigen glatte Oberflächen, wobei auch mehrlagige Systeme auf die jeweilige Lagenrauheit untersucht werden. Die Struktur der Schicht wird hauptsächlich durch die verwendeten molekulardynamischen Kraftfelder bestimmt, wie Untersuchungen der physikalischen Gasphasenabscheidung von Gold, Kupfer, Silizium und einem Kupfer-Nickel-Multilagensystem zeigen. Stark strukturierte Substrate führen hingegen zu Artefakten in Form von Nanoporen und Hohlräumen aufgrund der verwendeten KMC-Methode. Zur Simulation von chemischen Gasphasenabscheidungen werden die Precursor-Reaktionen von Silan mit Sauerstoff sowie die Hydroxylierung von alpha-Al2O3 mit Wasser mit reaktiven Kraftfeldern (ReaxFF) berechnet, allerdings ist weitere Arbeit notwendig, um komplette Abscheidungen auf diese Weise zu simulieren. Mit Parsivald wird somit die Erweiterung einer Software präsentiert, die Gasphasenabscheidungen auf großen Substraten effizient simulieren kann, dabei aber auf passende molekulardynamische Kraftfelder angewiesen ist.:Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Abkürzungsverzeichnis Symbolverzeichnis 1 Einleitung 2 Grundlagen 2.1 Gasphasenabscheidungen 2.1.1 Physikalische Gasphasenabscheidung 2.1.2 Chemische Gasphasenabscheidung 2.1.3 Atomlagenabscheidung 2.1.4 Methoden zur Simulation von Gasphasenabscheidungen 2.2 Molekulardynamik 2.2.1 Formulierung der Molekulardynamik 2.2.2 Auswahl verfügbarer Molekulardynamik-Software 2.2.3 Molekulardynamische Kraftfelder 2.3 Kinetic Monte Carlo-Methoden 2.4 Datenstrukturen 2.4.1 Numerische Voraussetzungen an Gasphasenabscheidungen 2.4.2 Vergleich der Laufzeiten für verschiedene Datenstrukturen 2.4.3 Effiziente Datenstrukturen 2.4.4 Alpha-Form 3 Methoden und Modelle 3.1 Stand der Forschung 3.1.1 Anwendungen von KMC-Simulationen für die Gasphasenabscheidung 3.1.2 Anwendung von MD-Simulationen für die Gasphasenabscheidung 3.2 Parsivald-Modell 3.2.1 Zielsetzung für Parsivald 3.2.2 Beschreibung des Parsivald-Modells 3.2.3 Annahmen und Einschränkungen 3.2.4 Erweiterungen im Rahmen der Masterarbeit 3.2.5 Behandlung von fehlerhaften Ereignissen 3.3 Laufzeitanalyse von Parsivald-Simulationen 3.3.1 Ereignis-Laufzeit TE 3.3.2 Ereignis-Durchsatz RE 3.3.3 MD-Laufzeit TMD 3.3.4 Worker-Laufzeit Tworker 3.3.5 Serielle Laufzeit T1 3.3.6 Anzahl der parallelen Prozesse p 3.3.7 Workerdichte rhoworker 3.3.8 Parallele Laufzeit Tp 3.3.9 Speedup Sp 3.3.10 Parallele Effizienz Ep 3.3.11 Auswertung der Laufzeitparameter 3.3.12 Fazit 3.4 MD-Simulationen: Methoden und Auswertungen 3.4.1 Zeitskalen in MD-Simulationen 3.4.2 Relaxierungen 3.4.3 Strukturanalysen 3.4.4 Bestimmung der Dichte und Temperatur 3.4.5 Radiale Verteilungsfunktionen, Bindungslänge und Koordinationszahl 3.4.6 Oberfläche, Schichtdicke, Rauheit und Porösität 3.4.7 Reaktionen und Stabilität von Molekülen 4 Simulationen von Gasphasenabscheidungen 4.1 Gold-PVD 4.1.1 Voruntersuchungen 4.1.2 Thermodynamische Eigenschaften 4.1.3 Simulation von Gold-PVD 4.1.4 Skalierbarkeit mit der Simulationsgröße 4.1.5 Fazit 4.2 Kupfer-PVD 4.2.1 Voruntersuchungen 4.2.2 Thermodynamische Eigenschaften 4.2.3 Simulation von Kupfer-PVD 4.2.4 Untersuchung der maximalen Workerdichte 4.2.5 Fazit 4.3 Multilagen-PVD 4.3.1 Multilagen-Simulationen mit Parsivald 4.3.2 Vergleich mit Ergebnissen reiner MD-Simulationen 4.3.3 Vergleich der Parallelisierbarkeit 4.3.4 Fazit 4.4 Silizium-PVD 4.4.1 Voruntersuchungen 4.4.2 Simulationen von Silizium-PVD 4.4.3 Fazit 4.5 Aluminiumoxid-ALD 4.5.1 ReaxFF-Parametersätze 4.5.2 Voruntersuchungen 4.5.3 Fazit 5 Zusammenfassung und Ausblick 5.1 Zusammenfassung 5.2 Ausblick A Physikalische Konstanten und Stoffeigenschaften B Datenstrukturen B.1 Übersicht über KMC-Operationen B.2 Beschreibung grundlegender Datenstrukturen B.3 Delaunay-Triangulationen B.3.1 Ausgewählte Eigenschaften einer Delaunay-Triangulation B.3.2 Algorithmen zur Konstruktion einer Delaunay-Triangulation C Ergänzungen zur Laufzeitanalyse von Parsivald C.1 Einfluss der Ereignis-Laufzeit auf die effiziente Raumgröße weff C.2 Zusätzliche Einflüsse auf das Maximum der Prozesse pmax C.3 Abschätzung der maximalen Workerdichte per Random Sequential Adsorption D Ergänzungen zur Simulation von Gold-PVD E Multilagen-PVD E.1 Porenbildung bei Unterrelaxation E.2 Simulationen mit Lagendicken von jeweils 5 nm F Simulation der CVD-Precursormoleküle Silan und Sauerstoff F.1 Stabilität der Precursormoleküle F.2 Reaktion der Precursormoleküle Literaturverzeichnis

Page generated in 0.0996 seconds