81 |
Fabricação e caracterização de dispositivos poliméricos emissores de luz com camada ativa de poli(2-metóxi, 5-(2\'-etil-hexilóxi)-1,4-fenileno vinileno) (MEH-PPV) / Fabrication and characterization of polymer light-emitting diodes with active layer composed by poly(2-methoxy, 5-(2\'-etil-hexilhoxy)-1,4-phenilene vinilene) (MEH-PPV).Gozzi, Giovani 20 February 2008 (has links)
Dispositivos poliméricos emissores de luz (Polymer Light Emitting Diodes - PLEDs) têm sido amplamente investigados devido à sua possibilidade de aplicação na fabricação de telas de projeção e displays. As principais vantagens dos materiais poliméricos, nesses casos, são o baixo custo e a possibilidade de processamento em superfícies de grande área, ao contrário do que ocorre para dispositivos contendo cristais líquidos (Liquid Crystal Display - LCD\'s). Apesar de amplamente investigados nos últimos anos, alguns aspectos fundamentais acerca dos mecanismos de injeção de carga nos PLEDs ainda não estão completamente elucidados. Nesta dissertação estudamos as propriedades ópticas, morfológicas e elétricas de dispositivos poliméricos emissores de luz contendo poli(2-metóxi, 5-(2\'-etil-hexilóxi)-1,4-fenileno vinileno) (MEH-PPV) como camada ativa. Inicialmente foi investigada a influência de camadas transportadoras de lacunas (Hole Transport Layer - HTL) e/ou elétrons (Electron Transport Layer - ETL) na eficiência dos dispositivos. As camadas HTL e ETL foram compostas de poli(3,4-etilenodioxithiofeno):poliestireno sulfonado (PEDOT:PSS), e poli(estireno-co-p-estireno sulfonado-co-metaacrilato de metila) (PS-co-SS-co-MMA), respectivamente. Os filmes de PEDOT:PSS foram depositados por centrifugação. Devido ao seu caráter isolante (condutividade elétrica 10-5 S/cm), e por ter nível energético HOMO (Highest Occupied Molecular Orbital) próximo ao nível de Fermi do ITO (Indium Thin Oxide), a utilização do PEDOT:PSS como camada reguladora da injeção de lacunas resultou num aumento do tempo de meia vida do dispositivo em cerca de 10 vezes. No caso de dispositivos contendo a camada de ETL, foi identificada a formação de estados localizados gerados pela sulfonação do poliestireno. Estes estados auxiliam no processo de tunelamento através da camada polimérica. Na segunda parte do trabalho, apresentada no capítulo 4, desenvolvemos um modelo teórico para descrever as regiões das curvas da densidade de corrente elétrica (J) vs. campo elétrico aplicado (F) (dependentes e independentes da temperatura). Este modelo é uma extensão do modelo de Arkhipov, onde inserimos um termo de injeção de carga via tunelamento Fowler-Nordhein através de uma distribuição gaussiana de barreiras de potencial de interface, além do termo de injeção via hopping, já tratado por Arkhipov. O modelo proposto ajustou satisfatoriamente as curvas de J vs. F tanto nos modo de polarização direta, quanto reversa. / Polymer light emitting diodes (PLEDs) have been widely investigated as candidate materials for display fabrication. The main advantages exhibited by PLEDs are the low-cost processing and possibility of large-area display fabrication, in comparison to the conventional liquid crystal displays (LCD\'s). Although the engineering aspects concerning device fabrication and characterization are well understood, some specific points regarding the electrical transport in the bulk and at the interfaces of the devices are not fully explained. In this study, we present a morphological, optical and electrical characterization of PLEDs containing poly(2-methoxi, 5-(2\'-etyl-hexiloxy)-1,4-phenilene vinilene) (MEH-PPV) as the emissive layer. We investigated the influence of hole transport layers (HTL) and/or electron transport layers (ETL) on the efficiency of the devices. The HTL and ETL comprised thin polymeric films of poly(3,4-etylenedioxythiphene):sulfonated polystyrene (PEDOT:PSS) and poly(estyrene-co-p-sulfonated styrene-co-metyl metacrylate) (PS-co-SS-co-MMA), respectively. Devices containing the PEDOT:PSS exhibited a life-time 10 times higher than the devices not containing the HTL material, which is probably due to the controlled hole injection that may be achieved in former devices. In the second set of devices, in which an ETL was incorporated, we observed the formation of localized states in the polymeric ETL layer, which was responsible for improving the tunneling process of charges injected from cathode. A theoretical model concerning the charge injection mechanisms in the PLEDs containing MEH-PPV is presented in chapter 4. The final device architecture was ITO/MEH-PPV/Al, and the J vs. F measurements were taken at temperatures between 120 K and 270 K. The model proposed here is a combination of the Arkhipov´s and Fowler-Nordhein tunneling models, considering a Gaussian distribution of triangular potential barriers. The model takes into account the charge carrier/image charge recombination probability at the interface of the electrode, being very appropriate to explain the dependence of the electric current on the temperature and applied electric field.
|
82 |
The synthesis of advanced " special pair " models for the photosynthetic reaction centreMecker, Christoph J, Chemistry, Faculty of Science, UNSW January 2000 (has links)
Multi-step photoinduced electron transfer takes place over a large distance in the photosynthetic reaction centres (PRCs). Electron donor in this life-spending event is the photo-excited 'special pair', a unit of two electronically coupled porphyrinoid chromophores. Bacteriopheophytin and two quinone molecules function as electron acceptors and contribute to the charge separation with almost unit quantum efficiency. The natural photosynthetic reaction centre is the most sophisticated molecular electronic device to date and interest is high in increasing our understanding of the basic quantum mechanical principles behind efficient electron transfer and ultimately copying Nature and construct similar efficient devices. Two main approaches towards a better understanding of the mechanisms involved have been taken. The more biological disciplines isolate, cultivate and alternate reaction centres whereas synthetic chemists prefer to construct well-defined models that mimic certain aspects of the reaction centres. Such a synthetic approach is described in the 'Synthesis of Advanced 'Special Pair' Models for the Photosynthetic Reaction Centre'. The aspect to be mimicked is the 'special pair'. One or two porphyrins in a well-defined spatial disposition (kinked or non-kinked in respect to each other) were to act as electron donor in rigid bichromophoric and trichromophoric systems. A tetracyanonaphthoquinodimethane (TCNQ) unit was employed as the electron acceptor in the series of dyads synthesised. The TCNQ acceptor was replaced by a naphthoquinone (NQ) primary acceptor covalently linked to a TCNQ secondary electron acceptor in the series of triads. Rigid norbornylogous bridges held the chromophores in place and Diels-Alder methodology as well as condensation reactions were applied to link donor, bridge and acceptor components. Despite larger interchromophoric separation than in the natural 'special pair', the two porphyrin chromophores of the series of 'special pair' dyads show some interaction and thereby prove the success of our approach towards 'special pair' mimics. Strong fluorescence quenching in the porphyrin-TCNQ dyads indicates the sought after electron transfer process. A number of synthetic problems experienced and overcome in the synthesis of the series of triads led to discovery of a one-step 'bis-ketonisation' from an olefin under Sharpless bis-hydroxylation conditions with N-methylmorpholine-N-oxide. High pressure was applied to circumvent a lack of reactivity in the condensation reaction used to attach the porphyrin moieties (one or two) to the donor backbone. For the linkage of donor, bridge and acceptor component, a procedure was developed and successfully applied to give the giant mono-porphyrin-NQ-TCNQ trichromophore. In a similar manner 'special pair' trichromophoric systems should be available as part of future work.
|
83 |
The Synthesis of Molecular Switches Based Upon Ru(II) Polypyridyl Architecture for Electronic ApplicationsSteen, Robert January 2007 (has links)
<p>According to the famous axiom known as Moore’s Law the number of transistors that can be etched on a given piece of silicon, and therefore the computing power, will double every 18 to 24 months. For the last 40 years Moore’s prediction has held true as computers have grown more and more powerful. However, around 2020 hardware manufac-turers will have reached the physical limits of silicon. A proposed solution to this dilemma is molecular electronics. Within this field researchers are attempting to develop individual organic molecules and metal complexes that can act as molecular equivalents of electronic components such as diodes, transistors and capacitors. By utilizing molecular electronics to construct the next generation of computers processors with 100,000 times as many components on the same surface area could potentially be created.</p><p>We have synthesized a range of new pyridyl thienopyridine ligands and compared the electrochemical and photophysical properties of their corresponding Ru(II) complexes with that with the Ru(II) complexes of a variety of ligands based on 6-thiophen-2-yl-2,2´-bipyridine and 4-thiophen-2-yl-2,2´-bipyridine. While the electrochemistry of the Ru(II) complexes were similar to that of unsubstituted [Ru(bpy)3]2+, substantial differences in luminescence lifetimes were found. Our findings show that, due to steric interactions with the auxiliary bipy-ridyl ligands, luminescence is quenched in Ru(II) complexes that in-corporate the 6-thiophen-2-yl-2,2´-bipyridine motif, while it is on par with the luminescence of [Ru(bpy)3]2+ in the Ru(II) complexes of the pyridyl thienopyridine ligands. The luminescence of the Ru(II) com-plexes based on the 4-thiophen-2-yl-2,2´-bipyridine motif was en-hanced compared to [Ru(bpy)3]2+ which indicates that complexes of this category are the most favourable for energy/electron-transfer sys-tems.</p><p>At the core of molecular electronics are the search for molecular ON/OFF switches. We have synthesized a reversible double cyclome-tallated switch based on the Ru(tpy) complex of 3,8-bis-(6-thiophen-2-yl-pyridin-2-yl)-[4,7]phenanthroline. Upon treatment with acid/base the complex can be switched between the cyclometallated and the S-bonded form. This prototype has potentially three different states which opens the path to systems based on ternary computer logic.</p>
|
84 |
Design, Synthesis and Properties of Bipyridine-capped Oligothiophenes for Directed Energy and Electron Transfer in Molecular Electronic ApplicationsNurkkala, Lasse January 2007 (has links)
<p>The earliest landmark in computer technology was construction of the Electronic Numerial Integrator and Computer, ENIAC. Computational switching was performed with vacuum tubes and relays, rather large in size, making this computer rather unwieldy. The next milestone came with the integration of transistors into computers as the switching component. Since then, transistors have been miniaturised dramatically, resulting in the amount of components integrated on a computer chip increasing logarithmically with time. The components are nowadays so small and so densely packed that problems with leak currents and cross-talk can arise and the lower limit for transistor size will soon be reached. In order to meet increasing demands on the size and performance of electronics, a new paradigm is due – the molecular electronics approach.</p><p>Oligothiophenes have been shown to possess the physical and chemical characteristics required for electron/energy transport in molecular systems. However oligothiophenes must be electronically coupled to other components within a molecular circuit for them to be functional. In this work, different modes of incorporation of [2,2’]-bipyridinyl functionalities onto the ends of prototypic oligothiophene wires have been examined. The bipyridine connectors allow complexation to metal centres which can then function as a source or sink of electrons in the circuit. Ruthenium tris-bipyridine complexes, in particular, possess interesting electrochemical and photophysical characteristics, making them suitable for use in molecular electronics.</p><p>This thesis reports synthetic strategies to a range of novel ligands based on the [2,2’]-bipyridinyl system, together with a study of the redox and fluorescence properties of their ruthenium tris-bipyridine complexes. The mode of connection between the chelating bipyridine and the first member of the oligothiophene chain was found to have a profound effect upon the fluorescence lifetimes and intensities of the resulting complexes. The discovery of complexes exhibiting long and intense fluorescence (a requirement for directed electron/energy transfer within molecular networks) thus forms an important design element in future prototypes.</p>
|
85 |
Ballistic Transport in Nanostructures, and its Application to Functionalized NanotubesMarzari, Nicola 01 1900 (has links)
We developed and implemented a first-principles based theory of the Landauer ballistic conductance, to determine the transport properties of nanostructures and molecular-electronics devices. Our approach starts from a quantum-mechanical description of the electronic structure of the system under consideration, performed at the density-functional theory level and using finite-temperature molecular dynamics simulations to obtain an ensemble of the most likely microscopic configurations. The extended Bloch states are then converted into maximally-localized Wannier functions to allow us to construct the Green's function of the conductor, from which we obtain the density of states (confirming the reliability of our microscopic calculations) and the Landauer conductance. A first application is presented to the case of pristine and functionalized carbon nanotubes. / Singapore-MIT Alliance (SMA)
|
86 |
Molecular Electronics : A Theoretical Study of Electronic Structure of Bulk and InterfacesUnge, Mikael January 2006 (has links)
This thesis deals with theoretical studies of the electronic structure of molecules used in the context of molecular electronics. Both studies with model Hamiltonians and first principle calculations have been performed. The materials studied include molecular crystals of pentacene and DNA, which are used as active material in field-effect transistors and as tentative molecular wires, respectively. The molecular magnet compound TCNE and surface modification by means of chemisorption of TDAE on gold are also studied. Molecular crystals of pentacene are reported to have the highest field-effect mobility values for organic thin film field-effect transistors. The conduction process in field-effect transistors applications occurs in a single layer of the molecular crystal. Hence, in studies of transport properties molecular crystals of pentacene can be considered as a two dimensional system. An open question of these system is if the charge transport is bandlike or if as a result of disorder is a hopping process. We address this question in two of the included papers, paper I and paper II. The conducting properties of DNA are of interest for a broad scientific community. Biologist for understanding of oxidatively damaged DNA and physicist and the electronics community for use as a molecular wire. Some reports on the subject classifies DNA as a conductor while other report insulating behavior. The outcome of the investigations are heavily dependent on the type of DNA being studied, clearly there is a big difference between the natural and more or less random sequence in, e.g., λ-DNA and the highly ordered syntethic poly(G)-poly(C) DNA. It has been suggested that long-range correlation would yield delocalized states, i.e., bandlike transport, in natural DNA, especially in the human chromosome 22. In paper III we show that this is not the case. In general our results show that DNA containing an approximately equal amount of the four basis is an insulator in a static picture. An emerging research field is spintronics. In spintronic devices the spin of the charge carrier is as important as the charge. One can envision a device where spin alone is the carrier of information. In realizing spintronic devices, materials that are both magnetic and semiconducting are needed. Systems that exhibit both these properties are organic-based magnets. In paper IV the electronic structure of the molecular magnet compound TCNE is studied, both experimentally and theoretically. The injection of carriers from metal contacts to organic semiconductors is central to the performance of organic based devices. The interface between the metal contact and the organic material has been pointed out to be one of the device parameters that most significantly influences the device performance. This relates to the process of injection of charge carriers in to the organic material. In some contact and organic material combinations the energy barrier for charge injection can be very high. The barrier can be reduced by modify the interface dipole, this is achieved by a monolayer of adsorbed molecules at the interface. The molecule TDAE chemisorbed on gold is studied in paper V.
|
87 |
Molecular Electronic Devices based on Ru(II) Thiophenyl Pyridine and Thienopyridine ArchitectureSteen, Robert January 2010 (has links)
According to the famous axiom known as Moore’s Law the number of transistors that can be etched on a given piece of ultra-pure silicon, and therefore the computing power, will double every 18 to 24 months. However, around 2020 hardware manufacturers will have reached the physical limits of silicon. A proposed solution to this dilemma is molecular electronics. Within this field researchers are attempting to develop individual organic molecules and metal complexes that can act as molecular equivalents of electronic components such as wires, diodes, transistors and capacitors. In this work we have synthesized a number of new bi- and terdentate thiophenyl pyridine and pyridyl thienopyridine ligands and compared the electrochemical, structural and photophysical properties of their corresponding Ru(II) complexes with Ru(II) complexes of a variety of ligands based on 6-thiophen-2-yl-2,2'-bipyridine and 4-thiophen-2-yl-2,2'-bipyridine motifs. While the electrochemistry of the Ru(II) complexes were similar to that of unsubstituted [Ru(bpy)3]2+ and [Ru(tpy)2]2+, substantial differences in luminescence lifetimes were found. Our findings show that, due to steric interactions with the auxiliary bipyridyl ligands, luminescence is quenched in Ru(II) complexes that incorporate the 6-thiophen-2-yl-2,2'-bipyridine motif, while it was comparable with the luminescence of [Ru(bpy)3]2+ in the Ru(II) complexes of bidentate pyridyl thienopyridine ligands. The luminescence of the Ru(II) complexes based on the 4-thiophen-2-yl-2,2'-bipyridine motif was enhanced compared to [Ru(bpy)3]2+ which indicates that complexes of this category may be applicable for energy/electron-transfer systems. At the core of molecular electronics is the search for molecular ON/OFF switches. Based on the ability of the ligand 6-thiophen-2-yl-2,2'-bipyridine to switch reversibly between cyclometallated and non-cyclometallated modes when complexed with Ru(tpy) we have synthesized a number of complexes, among them a bis-cyclometallated switch based on the ligand 3,8-bis-(6-thiophen-2-yl-pyridin-2-yl)-[4,7]phenanthroline, and examined their electrochemical properties. Only very weak electronic coupling could be detected, suggesting only little, if any, interaction between the ruthenium cores.
|
88 |
Electrical and Optical Characterization of Molecular NanojunctionsJanuary 2011 (has links)
Electrical conduction at the single molecule scale has been studied extensively with molecular nanojunctions. Measurements have revealed a wealth of interesting physics. I3owever; our understanding is hindered by a lack of methods for simultaneous local imaging or spectroscopy to determine the conformation and local environment of the molecule of interest. Optical molecular spectroscopies have made significant progress in recent years, with single molecule sensitivity achieved through the use of surface-enhanced spectroscopies. In particular surface-enhanced Raman spectroscopy (SERS) has been demonstrated to have single molecule sensitivity for specific plasmonic structures. Many unanswered quest ions remain about the SERS process, particularly the role of chemical enhancements of the Raman signal. The primary goal of the research presented here is to combine both electrical and optical characterization techniques to obtain a more complete picture of electrical conduction at the single or few molecule level. We have successfully demonstrated that nanojunctions are excellent SERS substrates with the ability to achieve single molecule sensitivity. This is a major accomplishment with practical applications in optical sensor design. We present a method for mass producing nanojunctions with SERS sensitivity optimized through computer modeling. We have demonstrated simultaneous optical and electrical measurements of molecular junctions with single molecule electrical and SERS sensitivity. Measurements show strong correlations between electrical conductance and changes to the SERS response of nanojunctions. These results allow for one of the most conclusive demonstrations of single molecule SERS to date. This measurement technique provides the framework for three additional studies discussed here as well as opening up the possibilities for numerous other experiments. One measurement examines heating in nanowires rather than nanojunctions. We observe that, the electromigration process used to turn Pt nanowires into nanojunctions heats the wires to temperatures in excess of 1000 K, indicating that thermal decomposition of molecules on the nanowire is a major problem. Another measurement studies optically driven currents in nanojunctions. The photocurrent is a result of rectification of the enhanced optical electric field in the nanogap. From low frequency electrical measurements we are able to infer the magnitude of the enhanced electric field, with inferred enhancements exceeding 1000. This work is significant to the field of plasmonics and shows the need for more complete quantum treatments of plasmonic structures. Finally we investigate electrical and optical heating in molecular nanojunctions. Our measurements show that molecular vibrations and conduction electrons in nano-junctions under electrical bias or laser illumination can be driven from equilibrium to temperatures greater than 600 K. We observe that individual vibrations are also not in thermal equilibrium with one another. Significant heating in the conduction electrons in the metal electrodes was observed which is not expected in the ballistic tunneling model for electrons in nanojunctions this indicates a need for a more completely energy dissipation theory for nanojunctions.
|
89 |
A Molecularly Switchable Polymer-Based Diode / En Molekylärt Switchbar Polymerbaserad DiodHultell Andersson, Magnus S. January 2002 (has links)
Despite tremendous achievements, the field of conjugated polymers is still in its infancy, mimicking the more mature inorganic, i.e. silicon-based, technologies. We may though look forward to the realisation of electronic and electrochemical devices with exotic designs and device applications, as our knowledge about the fundamentals of these promising materials grow ever stronger. My own contribution to this development, originating from an idea first put forward by my tutor, Professor Magnus Berggren, is a design for a switchable polymer-based diode. Its architecture is based on a modified version of a recently developed highly-rectifying diode,12 where an intermediate molecular layer has been incorporated in the bottom contact. Due to its unique ability to switch its internal resistance during operation, this thin layer can be used to shift the amount of (forward) current induced into the rectifying structure of the device, and by doing so shift its electrical characteristics between an insulating and a rectifying behaviour (as illustrated below). Such a component should be of great commercial interest in display technologies since it would, at least hypothetically, be able to replace the transistors presently used to address the individual matrix elements. However, although fairly simple in theory, it proved to be quite the challenge to fabricate the device structure. Machinery errors and contact problems aside, several process routes needed to be evaluated and only a small fraction of the batches were successful. In fact, it was not until the very last day that I detected the first indications that the concept might actually work. Hence, several modifications might still be necessary to undertake in order to get the device to work properly.
|
90 |
Quantum Optoelectronics: Nanoscale Transport in a New LightGonzalez, Jose Ignacio 11 April 2006 (has links)
Common to molecular electronics studies, nanoscale break junctions created through electromigration also naturally produce electroluminescent arrays of individual gold nanoclusters spanning the electrodes. Due to inelastic electron tunneling into cluster electronic energy levels, these several-atom nanoclusters (Au~18-22) exhibit bright, field-dependent, antibunched emission in the near infrared (650800 nm), acting as room-temperature electrically driven single-photon sources. AC electrical excitation with time-stamping of photon arrival times enables fast and local tracking of electrode-nanocluster coupling dynamics demonstrating that charge injection to the clusters is directly modulated by dynamic coupling to individual electrodes. The electrode-nanocluster coupling rate fluctuates by nearly an order of magnitude and, due to the asymmetry of the electromigration process, exhibits preferential charge injection from the anode. Directly reporting on (and often facilitating) nanoscale charge transport, time-tagged single-molecule electroluminescence reveals a significant mechanism for nanoscale charge transport in nanoscale gold break junctions, and offers direct readout of the electrode-molecule interactions that can be correlated with current flow. Single-molecule electroluminescence techniques for characterization of electrode heterogeneity and dynamics as well as implications for future research are discussed.
|
Page generated in 0.0697 seconds