• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 9
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 120
  • 120
  • 37
  • 28
  • 21
  • 18
  • 16
  • 16
  • 14
  • 14
  • 12
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Electrochemical Sensor Development for Fluoride Molten Salt Redox Control

Shay, Nikolas W. 21 September 2017 (has links)
No description available.
12

A Radioactive Tracer Dilution Method for LiCl-KCl Radioactive Eutectic Salts

Hardtmayer, Douglas E. January 2018 (has links)
No description available.
13

Thermal Transport and Heat Exchanger Design for the Space Molten Salt Reactor Concept

Flanders, Justin M. 31 August 2012 (has links)
No description available.
14

Material Degradation Studies in Molten Halide Salts

Dsouza, Brendan Harry 16 April 2021 (has links)
This study focused on molten salt purification processes to effectively reduce or eliminate the corrosive contaminants without altering the salt's chemistry and properties. The impurity-driven corrosion behavior of HAYNES® 230® alloy in the molten KCl-MgCl2-NaCl salt was studied at 800 ºC for 100 hours with different salt purity conditions. The H230 alloy exhibited better corrosion resistance in the salt with lower concentration of impurities. Furthermore, it was also found that the contaminants along with salt's own vaporization at high temperatures severely corroded even the non-wetted surface of the alloy. The presence of Mg in its metal form in the salt resulted in an even higher mass-loss possibly due to Mg-Ni interaction. The study also investigated the corrosion characteristics of several nickel and ferrous-based alloys in the molten KCl-MgCl2-NaCl salt. The average mass-loss was in the increasing order of C276 < SS316L < 709-RBB* < IN718 < H230 < 709-RBB < 709-4B2. The corrosion process was driven by the outward diffusion of chromium. However, other factors such as the microstructure of the alloy i.e. its manufacturing, refining, and heat-treatment processes have also shown to influence the corrosion process. Lowering the Cr content and introducing W and Mo in the alloy increased its resistance to corrosion but their non-uniform distribution in the alloy restricted its usefulness. To slow-down the corrosion process, and enhance the material properties, selected alloys were boronized and tested for their compatibility in the molten KCl-MgCl2-NaCl salt. The borided alloys exhibited better resistance to molten salt attack, where the boride layer in the exposed alloy was still intact, non-porous, and strongly adhered to the substrate. The alloys also did not show any compensation in their properties (hardness). It was also found that the boride layer always composed of an outermost silicide composite layer, which is also the weakest and undesired layer as it easily cracks, breaks, or depletes under mechanical and thermal stresses. Various different grades of "virgin" nuclear graphites were also tested in the molten KF-UF4-NaF salt to assist in the selection of tolerable or impermeable graphites for the MSR operational purposes. It was found that molten salt wettability with graphite was poor but it still infiltrated at higher pressure. Additionally, the infiltration also depended on the pore-size and porosity of the graphite. The graphite also showed severe degradation or disintegration of its structure because of induced stresses. / Doctor of Philosophy / Molten salts are considered as potential fuel and coolant candidates in MSRs because of their desirable thermophysical properties and heat-transfer capabilities. However, they pose grave challenges in material selection due to their corrosive nature, which is attributed to the impurities and their concentration (mostly moisture and oxygen-based) in the salt. This study focused on purifying the salt to reduce these contaminants without compromising its composition and properties. The influence of purification processes on the corrosion behavior of HAYNES® 230® alloy was studied in the molten chloride salt with different purity conditions. Various nickel and ferrous-based alloys were also studied for their compatibility in the molten chloride salt. This will assist in expediting the material selection process for various molten salt applications. It was observed that several factors such as alloy composition, its microstructure, impurities in the salt attribute to molten salt corrosion. It was also quite evident that corrosion in molten salts is inevitable and hence, the focus was shifted on slowing down this process by providing protective barriers in the form of coatings (i.e. boronization). The borided (coated) alloys not only improved the corrosion resistance but also enhanced and retained their properties like hardness after exposure to molten salts. Since these studies were conducted under static conditions, a more detailed investigation is needed for the selected alloys by subjecting them to extreme flow-conditions and for longer a duration of time. To achieve this objective, a forced circulation molten salt loop was designed and fabricated to conduct flow corrosion studies for alloys in molten chloride salt. Graphite is another critical component of the MSR where it is used as a moderator or reflector. Generally, molten salts exhibit poor wettability with graphite, but they can still infiltrate (graphites) at higher applied pressures, and result in the degradation or disintegration of graphite's structure, and eventually its failure in the reactor. This study provides infiltration data, and understanding of the degradation of various 'virgin' nuclear graphite grades by the molten fluoride salt. This should assist in the selection of tolerable or impermeable graphite grades for MSR operational purposes.
15

The Electrochemical Properties of the Mercury/lithium Nitrate-potassium Nitrate Eutectic Interface

Flinn, David R. 08 1900 (has links)
The original purpose of this investigation was to attempt to apply the coulostatic method directly to a molten salt system. The inability to duplicate the reported capacity data for this system resulted in an investigation of the probable cause of this discrepancy between the data obtained by these different methods (14, 15).
16

Molten-salt Catalytic Pyrolysis (MSCP): A Single-pot Process for Fuels from Biomass

Gu, Xiangyu 29 April 2015 (has links)
A novel process for single-pot conversion of biomass to biofuels was developed called the molten salt catalytic pyrolysis (MSCP) method. The proposed single-pot MSCP process proved to be an inherently more efficient and cost-effective methodology for converting lignocellulosic biomass. In this study, several parameters that affect yield of bio-oil were investigated including carrier gas flow rate; pyrolysis temperature; feed particle size; varying types of molten salt and catalysts. Use of molten salt as the reaction medium offered higher liquid yield and experiments containing ZnCl2 showed higher yield than other chloride salts. The highest yield of bio-oil was up to 66% obtained in a ZnCl2-KCl-LiCl ternary molten salt system compared with 32.2% at the same condition without molten salts. In addition, the effect of molten salt on the composition of bio-oil was also studied. It was observed that molten salt narrowed the product distribution of bio-oil with furfural and acetic acid as the only two main components in the liquid with the exception of water. Finally, a thermogravimetric kinetic study on the pyrolysis of biomass in MSCP was conducted.
17

Development of an Intermediate Temperature Molten Salt Fuel Cell

Konde, Spence Martin 21 January 2009 (has links)
In recognition of the shortcomings inherent to the operating temperature ranges of current fuel cell systems, namely the“temperature gap" between 200C and 600C, an effort to develop an intermediate-temperature molten-salt electrolyte fuel cell (IT-MSFC) was undertaken. In this type of fuel cell, the molten salt electrolyte is supported on a porous support, in a planar or other geometry similar to that used in existing fuel cell technologies, such as phosphoric acid fuel cell (PAFC) and molten carbonate fuel cells (MCFC). Such a fuel cell using a molten hydroxide electrolyte and Pt/C catalyst was constructed and tested using hydrogen and oxygen as fuel. The performance was comparable to that which has been obtained from PEM fuel cells at the low end of the voltage range, reaching 950ma/cm2 at 0.4 V in the highest performing test. Performance was superior to PEM fuel cells at the high end of the voltage range, due to the more favorable kinetics at the higher temperatures, with an open circuit voltage (OCV) of 1.0 V with a linear performance curve between 1.0 V and 0.6 V, which is characteristic of fuel cells with low kinetic overpotentials. Longevity of the fuel cell was very poor, however a number of experiments were undertaken to improve it, enabling extension of operating life from 5 minutes to 30 minutes, which is still far too low for practical use. The key problem was identified as electrolyte retention by the support matrix and possible degradation of the gas diffusion layer and catalyst. Experiments were also conducted using methanol vapor as fuel, and it was found to provide performance close to that recorded with pure hydrogen. Experiments were also conducted using several alternative molten salts, including nitrate and chloride eutectics. Combinations of nitrates with hydroxides added to act as a charge carrier produced a working fuel cell, however performance was greatly reduced. Though preliminary, the work described herein demonstrates the great potential of IT-MSFC, and outlines the work needed to make this type of fuel cell practical.
18

Molten salt spectroscopy and electrochemistry for spent nuclear fuel treatment

Lambert, Hugues January 2017 (has links)
Pyroprocessing, via electrorefining in a molten salt bath, is a promising treatment route for spent nuclear fuel reprocessing. In order to implement such a technology and ensure its safe operation it is vital to develop on-line techniques to understand and monitor the molten salt and its contents. These tools are technically challenging because of the high temperatures and corrosive environment experienced in molten salt media. Electrochemical, spectroscopic and spectroelectrochemical methods were developed and used to study actinide and fission product behaviour in molten LiCl-KCl eutectic. A spectroscopic furnace was designed and supporting methodology developed in order to allow the acquisition of reproducible quantitative data. The apparatus monitored the precipitation of NdCl3 by the addition of Li2CO3 and PrCl3 by the addition of Li2O in LiCl-KCl eutectic. The precipitates formed were identified as the respective LnOCl. In order to probe actinide behaviour in this hygroscopic medium, dry actinides chlorides were synthesised. The oxidation of uranium metal by BiCl3 in LiCl-KCl eutectic yielded UCl3 while neptunium and plutonium were prepared as Cs2AnCl6 via precipitation in concentrated aqueous HCl by addition of CsCl. The molar extinction coefficients for U(III), U(IV), Np(IV) and Pu(III) were obtained in LiCl-KCl eutectic at 450 áμ’C. The study of the Np(IV)/Np(III) couple via spectroelectrochemical techniques, enabled the determination of the Np(III) molar extinction coefficients. Uranium was studied in LiCl-KCl eutectic using square wave voltammetry, cyclic voltammetry and chronoabsorptometry. The electrochemical techniques benchmarked the results obtained by spectroelectrochemistry. The results from the different techniques were compared to and explained by determining the Gibbs energy and activation energy of U(III) and U(IV). It was concluded that all the mentioned techniques are suitable for the study of high temperature molten chlorides. Because of its capacity to gather numerous data parameters while minimising the number of experiments required and the quantity of material needed, spectroelectrochemical methods were highlighted as the most promising technique for future studies of radionuclides in high temperature melts.
19

Thermal management of the copper-chlorine cycle for hydrogen production: analytical and experimental investigation of heat recovery from molten salt

Ghandehariun, Samane 01 August 2012 (has links)
Hydrogen is known as a clean energy carrier which has the potential to play a major role in addressing the climate change and global warming, and thermochemical water splitting via the copper-chlorine cycle is a promising method of hydrogen production. In this research, thermal management of the copper-chlorine cycle for hydrogen production is investigated by performing analytical and experimental analyses of selected heat recovery options. First, the heat requirement of the copper-chlorine cycle is estimated. The pinch analysis is used to determine the maximum recoverable heat within the cycle, and where in the cycle the recovered heat can be used efficiently. It is shown that a major part of the potential heat recovery can be achieved by cooling and solidifying molten copper(I) chloride exiting one step in the cycle: the oxygen reactor. Heat transfer from molten CuCl can be carried out through direct contact or indirect contact methods. Predictive analytical models are developed to analyze a direct contact heat recovery process (i.e. a spray column) and an indirect contact heat recovery process (i.e. a double-pipe heat exchanger). Characteristics of a spray column, in which recovered heat from molten CuCl is used to produce superheated steam, are presented. Decreasing the droplet size may increase the heat transfer rate from the droplet, and hence decreases the required height of the heat exchanger. For a droplet of 1 mm, the height of the heat exchanger is predicted to be about 7 m. The effect of hydrogen production on the heat exchanger diameter was also shown. For a hydrogen production rate of 1000 kg/day, the diameter of the heat exchanger is about 3 m for a droplet size of 1 mm and 2.2 m for a droplet size of 2 mm. The results for axial growth of the solid layer and variations of the coolant temperature and wall temperature of a double-pipe heat exchanger are also presented. It is shown that reducing the inner tube diameter will increase the heat exchanger length and increase the outlet temperature of air significantly. It is shown that the air temperature increases to 190oC in a heat exchanger with a length of 15 cm and inner tube radius of 10 cm. The length of a heat exchanger with the inner tube radius of 12 cm is predicted to be about 53 cm. The outlet temperature of air is about 380oC in this case. The length of a heat exchanger with an inner tube diameter of 24 cm is predicted to be about 53 cm and 91 cm for coolant flow rates of 3 g/s and 4 g/s, respectively. Increasing the mass flow rate of air will increase the total heat flux from the molten salt by increasing the length of the heat exchanger. Experimental studies are performed to validate the proposed methods and to further investigate their feasibility. The hazards involving copper(I) chloride are also investigated, as well as corresponding hazard reduction options. Using the reactant Cu2OCl2 in the oxygen production step to absorb CuCl vapor is the most preferable option compared to the alternatives, which include absorbing CuCl vapor with water or CuCl2 and building additional structures inside the oxygen production reactor. / UOIT
20

Ferroboron Production By Electrodeoxidation

Ors, Taylan 01 September 2008 (has links) (PDF)
In this study ferroboron (Fe - 14 at %B) was synthesized in crystalline form (Fe + Fe2B) via electrodeoxidation. For this purpose, Fe2O3 and H3BO3 were mixed in suitable proportions via spex mill. The powder was cold pressed and sintered at 900 &deg / C yielding a two phase structure Fe3BO6 and Fe2O3. The sintered pellets were electro-deoxidized in CaCl2 by applying 3.1 Volts at 850&deg / C for 12 hours. This yielded Fe and Fe2B in proportions slightly deviating from the target composition. The chemical pathway of reduction is inspected by the help of the available thermodynamic data and the x-ray characterization of partially reduced samples. CaO and the formation of Ca3B2O6 were found to be effective in the mid-steps of this electrodeoxidation process.

Page generated in 0.0502 seconds