• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approaches to multiprocessor error recovery using an on-chip interconnect subsystem

Vadlamani, Ramakrishna P 01 January 2010 (has links) (PDF)
For future multicores, a dedicated interconnect subsystem for on-chip monitors was found to be highly beneficial in terms of scalability, performance and area. In this thesis, such a monitor network (MNoC) is used for multicores to support selective error identification and recovery and maintain target chip reliability in the context of dynamic voltage and frequency scaling (DVFS). A selective shared memory multiprocessor recovery is performed using MNoC in which, when an error is detected, only the group of processors sharing an application with the affected processors are recovered. Although the use of DVFS in contemporary multicores provides significant protection from unpredictable thermal events, a potential side effect can be an increased processor exposure to soft errors. To address this issue, a flexible fault prevention and recovery mechanism has been developed to selectively enable a small amount of per-core dual modular redundancy (DMR) in response to increased vulnerability, as measured by the processor architectural vulnerability factor (AVF). Our new algorithm for DMR deployment aims to provide a stable effective soft error rate (SER) by using DMR in response to DVFS caused by thermal events. The algorithm is implemented in real-time on the multicore using MNoC and controller which evaluates thermal information and multicore performance statistics in addition to error information. DVFS experiments with a multicore simulator using standard benchmarks show an average 6% improvement in overall power consumption and a stable SER by using selective DMR versus continuous DMR deployment.

Page generated in 0.1664 seconds