• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The use of human pluripotent stem cells to model HNF1B-associated diabetes

Ranna El Khairi, Ranna January 2018 (has links)
Heterozygous mutations in the transcription factor, hepatocyte nuclear factor 1B (HNF1B), result in multisystem disease including diabetes due to beta-cell dysfunction and pancreatic hypoplasia. However, the mechanisms that underlie development of diabetes in HNF1B mutation carriers are still not fully understood due to lack of an appropriate model system. Human induced pluripotent stem cells (hiPSCs), which are capable of self-renewal and can differentiate into any cell type, provide an advantageous alternative to model human developmental diseases. The aim of this project was to develop a hiPSC based model system to determine the molecular mechanisms by which HNF1B mutations cause pancreatic hypoplasia and diabetes. HNF1B mutant hiPSC lines were produced using CRISPR-Cas9 genome editing. Isogenic HNF1B wild-type, homozygous and heterozygous mutant hiPSC lines were directed to differentiate along the pancreatic lineage and cells were phenotyped at each stage of the differentiation process to check for appropriate expression of lineage markers. The normal expression pattern of HNF1B in human pancreas development was analysed and showed up-regulation of HNF1B at the foregut stage, and during pancreas specification. Homozygous knockout of HNF1B resulted in failure of foregut and pancreatic progenitor development, while heterozygous knockout of HNF1B resulted in impairment of pancreatic progenitor and endocrine cell differentiation as well as impaired insulin secretion upon glucose stimulation. Cell proliferation analyses showed a significant decrease in the proliferation rate in HNF1B heterozygous and homozygous mutant cells compared with wild-type cells at the foregut stage while no change in the apoptosis rate could be detected. RNA-sequencing and ATAC-sequencing, were used to further define the molecular mechanisms controlled by HNF1B and the effect HNF1B on modulation of chromatin accessibility during pancreas development. These results provide further insights into the molecular mechanisms by which HNF1B regulates human pancreas development and function, revealing that HNF1B haploinsufficiency impairs the expansion and maintenance of pancreatic progenitor cells in vitro. In vivo, this would likely result in reduced beta cell numbers at birth and diabetes later in life in patients with HNF1B-associated disease. These mechanisms suggest that the capacity to produce pancreatic progenitor cells during embryonic life could determine individual susceptibility to diabetes.
2

The molecular genetics of insulin secretion and signalling

McCulloch, Laura Jade January 2011 (has links)
Type 2 diabetes (T2D) and fasting plasma glucose (fpg) levels have distinct genetic components which are as yet only modestly understood. Understanding the genetics of this complex disorder and its related traits is likely to be of significant benefit to the field. Not only will it shed light on critical genes, pathways and mechanisms of regulation, but it may also contribute to the development of pharmaceutical anti-hyperglycaemic agents via the identification of key therapeutic targets. Therefore the aim of this thesis was to utilise a broad, multidisciplinary approach to study the genetics of insulin secretion and signalling. Traditionally genes which harbour rare variants causing monogenic beta-cell dysfunction have also been found to harbour common variants associated with T2D and fpg. As genome-wide association studies (GWAS) identify an increasing number of common variants and genes, they also increase the number of genes which act as monogenic candidates. I screened G6PC2, a novel fpg associated gene, in patients with monogenic forms of beta-cell dysfunction and demonstrated that rare variants in this gene are unlikely to be a common cause of monogenic beta-cell dysfunction. Although GWAS have been of considerable benefit to our understanding of complex disease genetics, they are not without their own limitations, primarily concerning signal refinement. To try to overcome this barrier for T2D and fpg signals I established a pipeline for fluorescence activated cell sorting of human islets to obtain pure beta-cells. In these cells, I performed transcript profiling of genes falling within T2D and fpg associated loci, demonstrating how this approach, alongside physiological analysis, can be of benefit for GWAS researchers and provide a starting point for fine mapping. Access to human beta-cells also enabled me to follow up one novel fpg association signal, SLC2A2. Through analysis within this metabolically relevant tissue I was able to establish that the mechanism for increased fpg levels is unlikely to be mediated via a beta-cell pathway. Although GWAS have highlighted a number of key genes associated with beta-cell dysfunction; they have been far less successful at identifying genes associated with insulin resistance, another key component of T2D pathogenesis. Additional approaches, including the study of rodent models, may be required to study this aspect of T2D. PTEN is known to negatively regulate the insulin signalling pathway and adipose tissue specific Pten-/- animals were shown to be markedly insulin sensitive. To assess the role of PTEN in human insulin sensitivity I performed mRNA expression profiling of PTEN in human adipose tissue biopsies from subjects with T2D and matched controls, demonstrating that PTEN is significantly reduced in the subcutaneous adipose tissue of the former. This response is likely to be a compensatory mechanism to counteract muscular insulin resistance although further investigation needs to be performed to determine the mechanism of compensatory downregulation. These data provide insights into a number of aspects of T2D genetics, and demonstrate how a multidisciplinary approach is of benefit to T2D genetic research.
3

Identification de loci suppresseurs du phénotype diabétique lié à la déficience en Hnf1a chez la souris / Diabetic phenotype linked to Hnf1a deficiency is suppressed by genetic background in mice

Carette, Claire 27 November 2014 (has links)
Les souris invalidées pour Hnf1a présentent un diabète sévère avec défaut d’insulino-sécrétion proche du phénotype observé chez les patients MODY3 (Maturity Onset Diabetes of te Young). Les mécanismes moléculaires responsables du diabète lié à la déficience en Hnf1a ne sont pas clairement compris. Dans ce travail, nous avons montré que des souris congéniques présentant la même délétion de Hnf1a dans des fonds génétiques différents présentent des phénotypes radicalement opposés. En effet, la déficience en Hnf1a conduit à un diabète sévère dans la plupart des lignées telles que 129, B6, BALB/c ou AJ (lignées sensibles). Mais à l’inverse, aucun diabète n’est observé chez les souris congéniques des lignées CBA et C3H malgré le défaut d’expression de Hnf1a (lignées résistantes). Les souris sensibles présentent une altération de leurs îlots de Langerhans avec notamment une diminution de taille de ces îlots. A l’inverse les souris résistantes présentent des îlots beta de taille normale malgré la déficience en Hnf1a. Nous avons pu montrer que le ou les variants génétiques présents dans les deux lignées résistantes agissent de façon dominante et, par un balayage du génome, nous avons identifié un locus majeur suppresseur du phénotype diabétique au niveau du chromosome 3. Ce locus majeur contient 11 gènes présentant des variations de SNP non synonymes et il interagit avec cinq autres loci ancillaires au niveau des chromosomes 4, 11 et 18. Notre travail montre finalement que les variations génétiques naturellement présentes dans les lignées de souris de laboratoire peuvent supprimer le phénotype diabétique lié à la déficience en Hnf1a. / Hnf1a-/- mice exhibit a severe diabetes mellitus due to a drastic defect in insulin secretion that closely resembles to the phenotype presented by MODY3 (Maturity Onset Diabetes of the Young type 3) patients. The molecular mechanisms responsible for the diabetes are still poorly understood. Here we show that congenic mice of different genetic backgrounds carrying the same Hnf1a deletion presented with drastically different phenotypes. Hnf1a-deficiency led to severe diabetes when introgressed into 129, B6, BALB/C or A/J genetic backgrounds (sensitive strains). Conversely, when the same null mutation was introgressed into CBA or C3H genetic backgrounds (resistant strains), the diabetic phenotype was suppressed. In sensitive strains, pancreatic islets did not increase in size compared to control animals and on the other hand average islet-size growth was normal in resistant strains. The genetic variations naturally present in these two resistant strains acted in a dominant way and a genome scan analysis led to the identification of a major suppressor locus on chromosome 3 that accounted for more than 60% of the variance of glycemia. The major locus contained 11 genes with non-synonymous SNPs changes and it interacted with 5 additional ancillary loci on chromosomes 4, 11 and 18. Our study demonstrated that the naturally occurring genetic variation present in distinct mouse laboratory strains is able to suppress the phenotype of a monogenic disorder.
4

Clinical presentation and long-term outcome of patients with KCNJ11/ABCC8 variants: Neonatal diabetes or MODY in the DPV registry from Germany and Austria

Warncke, Katharina, Eckert, Alexander, Kapellen, Thomas, Kummer, Sebastian, Raile, Klemens, Dunstheimer, Desiree, Grulich-Henn, Jürgen, Woelfle, Joachim, Wenzel, Sandra, Hofer, Sabine E., Dost, Axel, Holl, Reinhard W. 21 May 2024 (has links)
Objective: To describe clinical presentation/longterm outcomes of patients with ABCC8/KCNJ11 variants in a large cohort of patients with diabetes. Research Design and Methods: We analyzed patients in the Diabetes Prospective Follow-up (DPV) registry with diabetes and pathogenic variants in the ABCC8/ KCNJ11 genes. For patients with available data at three specific time-points— classification as K+-channel variant, 2-year follow-up and most recent visit—the longitudinal course was evaluated in addition to the cross-sectional examination. Results: We identified 93 cases with ABCC8 (n = 54)/KCNJ11 (n = 39) variants, 63 of them with neonatal diabetes. For 22 patients, follow-up data were available. Of these, 19 were treated with insulin at diagnosis, and the majority of patients was switched to sulfonylurea thereafter. However, insulin was still administered in six patients at the most recent visit. Patients were in good metabolic control with a median (IQR) A1c level of 6.0% (5.5–6.7), that is, 42.1 (36.6–49.7) mmol/mol after 2 years and 6.7% (6.0– 8.0), that is, 49.7 (42.1–63.9) mmol/mol at the most recent visit. Five patients were temporarily without medication for a median (IQR) time of 4.0 (3.5–4.4) years, while two other patients continue to be off medication at the last follow-up. Conclusions: ABCC8/KCNJ11 variants should be suspected in children diagnosed with diabetes below the age of 6 months, as a high percentage can be switched from insulin to oral antidiabetic drugs. Thirty patients with diabetes due to pathogenic variants of ABCC8 or KCNJ11 were diagnosed beyond the neonatal period. Patients maintain good metabolic control even after a diabetes duration of up to 11 years
5

Análise molecular por painel de sequenciamento em larga escala em pacientes com diagnóstico clínico de MODY (maturity-onset diabetes of the young) / Molecular analysis by large-scale sequencing panel in patients with clinical diagnosis of MODY (maturity-onset diabetes of the young)

Caetano, Lílian Araújo 15 December 2017 (has links)
O diabetes mellitus tipo MODY (maturity-onset diabetes of the young) é caracterizado por defeito na secreção de insulina, herança autossômica dominante, hiperglicemia de início precoce e anticorpos anti-células beta negativos. Até o momento, já foram descritas mutações em 14 genes diferentes. A confirmação do diagnóstico de MODY é feita por estudo genético-molecular, tradicionalmente pelo método de Sanger. Diante da grande heterogeneidade genética de MODY, acrescida da dificuldade de estudo de alguns genes por seu grande tamanho e ausência de hotspots, o sequenciamento em larga escala (SLE) mostra-se promissor para uma análise genética custo-efetiva na suspeita de MODY. No Brasil, existem poucos estudos genéticos de rastreamento de MODY e uma alta prevalência de casos sem mutações identificadas nos genes testados (MODY X). Os objetivos deste estudo foram: 1) analisar simultaneamente todos os genes associados a MODY em uma coorte de pacientes com suspeita clínica, utilizando um painel de SLE; 2) avaliar a patogenicidade das variantes alélicas identificadas de acordo com os critérios da Sociedade Americana de Genética Médica (ACMG). Foram selecionados 80 casos com fenótipo de MODY e análise prévia negativa dos 2 genes mais prevalentes, GCK e HNF1A, pelo método de sequenciamento de Sanger. Estes casos foram analisados pelo método de SLE, direcionado para regiões gênicas alvo, por meio de um painel customizado, com sequenciamento simultâneo de 51 genes nucleares e do genoma mitocondrial. As mutações identificadas foram correlacionadas com o fenótipo e foi realizada a segregação familiar. Uma cobertura de no mínimo 20x foi obtida em 98% das regiões alvo. Dos 80 pacientes avaliados, foram detectadas variantes patogênicas/potencialmente patogênicas em 16 casos (20%), confirmando o diagnóstico genético de MODY. Em 15 dos 80 pacientes foram identificadas 16 variantes de significado incerto, restando ainda 42 casos com diagnóstico molecular não esclarecido. Dos 16 casos confirmados geneticamente: 6 foram no gene GCK, 1 no HNF1A, 1 no HNF4A, 1 no HNF1B, 6 em genes raros associados a MODY (1 no ABCC8, 1 no KCNJ11, 1 no PDX1, 2 no PAX4, 1 no NEUROD1), e 1 no NEUROG3, gene associado a diabetes neonatal. Dentre estas 16 variantes, 2 não haviam sido descritas previamente. As 6 mutações no GCK não tinham sido detectadas na análise prévia por: a) 4 casos falso negativos no sequenciamento por Sanger (3 devido ao fenômeno genético de allelic dropout e 1 por erro na leitura do eletroferograma); b) 2 erros na hipótese clínica inicial do subtipo de MODY (baseada no padrão glicêmico e na resposta terapêutica dos pacientes), levando ao sequenciamento prévio de outro gene. A variante no HNF1A não foi detectada previamente por erro na leitura do eletroferograma (caso falso negativo no Sanger). Uma variante foi identificada no gene HNF4A, que não tinha sido sequenciado anteriormente e apresenta fenótipo semelhante ao do HNF1A. O paciente com variante no HNF1B não apresentava relato prévio de cistos renais ou malformações genito-urinárias e por isso não tinha sido considerada a hipótese clínica de MODY5. Além disso, o SLE confirmou o diagnóstico genético de 6 pacientes com variantes em genes de MODY considerados raros, que habitualmente não são sequenciados na rotina de Sanger e ainda detectou uma variante em um gene de diabetes neonatal (sendo necessário maiores estudos para estabelecer uma relação causal com MODY). Em 13 dos 16 casos índices diagnosticados, os familiares encontravam-se disponíveis para exame genético e a co-segregação foi concordante em 8 famílias. Todos os probandos avaliados apresentavam características clínico-laboratoriais típicas de MODY. Os achados deste estudo mostraram que o SLE foi capaz de aumentar a acurácia no diagnóstico de MODY, permitindo a confirmação molecular de 20% dos casos antes negativos e reduzindo, assim, o número de casos MODY X no Brasil. A abordagem genética por painel de SLE para diagnosticar casos com suspeita clínica de MODY mostrou-se promissora para elucidar as bases genéticas desse tipo de diabetes monogênico / Diabetes mellitus type MODY (maturity-onset diabetes of the young) is characterized by defects in insulin secretion, autosomal dominant inheritance, early onset of hyperglycemia, and negative anti-beta cell antibodies. To date, mutations in 14 genes are associated with MODY. The definitive diagnosis relies on genetic tests, traditionally by Sanger sequencing. However, given the genetic heterogeneity of this condition, added to the difficulty of studying some genes due to their large size and lack of hotspots, large-scale sequencing (LSS) seems promising for cost-effective genetic analysis on suspicion of MODY. In Brazil, there are few cohorts screened for MODY and a high prevalence of MODY X (unclear genetic diagnosis). This study aimed to analyze simultaneously all MODY genes in a cohort of clinically suspected patients using a LSS panel; and to evaluate the pathogenicity of identified allelic variants according to the criteria of the American College of Medical Genetics and Genomics (ACMG). We selected 80 subjects with MODY phenotype and negative previous analysis of the 2 most prevalent genes, GCK and HNF1A, by Sanger sequencing method. These cases were analyzed by LSS method, with simultaneous sequencing of target genes. We designed a customized panel, including 51 nuclear genes and the mitochondrial genome. The identified mutations were correlated to the phenotype and family segregation was evaluated. At least 20x coverage was obtained in 98% of the targeted regions. Of 80 evaluated subjects, pathogenic/probably pathogenic variants were detected in 16 cases (20%), confirming the genetic diagnosis of MODY. In 15 of 80 patients, 16 variants of uncertain significance were identified, remaining 42 cases with unexplained molecular diagnosis. Of the 16 genetically confirmed cases: 6 were in the GCK gene, 1 in HNF1A, 1 in HNF4A, 1 in HNF1B, and 6 in rare genes associated with MODY (1 in ABCC8, 1 in KCNJ11, 1 in PDX1, 2 in PAX4 and 1 in NEUROD1), and 1 in NEUROG3, a gene associated with neonatal diabetes. Of these 16 variants, 2 had not been previously described. Those 6 variants in GCK were not detected in the prior analysis because of: a) 4 false negative cases in Sanger sequencing (allelic dropout had occurred in 3 cases and one variant was overlooked, due to electropherogram interpretation failure); b) 2 errors in the initial clinical hypothesis of the MODY subtype (based on the glycemic pattern and therapeutic response), leading to the prior sequencing of another gene. The variant in HNF1A was not previously identified due to misinterpretation in electropherogram (Sanger false negative case). One variant were detected in the HNF4A gene, not formerly sequenced, and had a similar phenotype to that of HNF1A. The patient with HNF1B variant did not have a previous report of renal cysts or genito-urinary malformations and therefore the clinical hypothesis of MODY5 was not considered. In addition, LSS confirmed the genetic diagnosis of 6 patients harboring variants in MODY genes considered to be rare, which are not usually sequenced in the Sanger routine, and also detected one variant in a neonatal diabetes gene (further studies are necessary to establish a causal relationship with MODY). Relatives were available for genetic testing in 13 of these 16 index cases diagnosed and co-segregation was concordant in 8 families. All probands evaluated showed typical clinical and laboratory characteristics of MODY. These study findings showed that targeted-LSS could increase accuracy in MODY diagnosis, enabling molecular confirmation of 20% of previous negative cases and thus reducing the number of MODY X cases in Brazil. The genetic approach of LSS panel to diagnose cases with clinical suspicion of MODY has shown promise for elucidating the genetic basis of this type of monogenic diabetes
6

Análise molecular por painel de sequenciamento em larga escala em pacientes com diagnóstico clínico de MODY (maturity-onset diabetes of the young) / Molecular analysis by large-scale sequencing panel in patients with clinical diagnosis of MODY (maturity-onset diabetes of the young)

Lílian Araújo Caetano 15 December 2017 (has links)
O diabetes mellitus tipo MODY (maturity-onset diabetes of the young) é caracterizado por defeito na secreção de insulina, herança autossômica dominante, hiperglicemia de início precoce e anticorpos anti-células beta negativos. Até o momento, já foram descritas mutações em 14 genes diferentes. A confirmação do diagnóstico de MODY é feita por estudo genético-molecular, tradicionalmente pelo método de Sanger. Diante da grande heterogeneidade genética de MODY, acrescida da dificuldade de estudo de alguns genes por seu grande tamanho e ausência de hotspots, o sequenciamento em larga escala (SLE) mostra-se promissor para uma análise genética custo-efetiva na suspeita de MODY. No Brasil, existem poucos estudos genéticos de rastreamento de MODY e uma alta prevalência de casos sem mutações identificadas nos genes testados (MODY X). Os objetivos deste estudo foram: 1) analisar simultaneamente todos os genes associados a MODY em uma coorte de pacientes com suspeita clínica, utilizando um painel de SLE; 2) avaliar a patogenicidade das variantes alélicas identificadas de acordo com os critérios da Sociedade Americana de Genética Médica (ACMG). Foram selecionados 80 casos com fenótipo de MODY e análise prévia negativa dos 2 genes mais prevalentes, GCK e HNF1A, pelo método de sequenciamento de Sanger. Estes casos foram analisados pelo método de SLE, direcionado para regiões gênicas alvo, por meio de um painel customizado, com sequenciamento simultâneo de 51 genes nucleares e do genoma mitocondrial. As mutações identificadas foram correlacionadas com o fenótipo e foi realizada a segregação familiar. Uma cobertura de no mínimo 20x foi obtida em 98% das regiões alvo. Dos 80 pacientes avaliados, foram detectadas variantes patogênicas/potencialmente patogênicas em 16 casos (20%), confirmando o diagnóstico genético de MODY. Em 15 dos 80 pacientes foram identificadas 16 variantes de significado incerto, restando ainda 42 casos com diagnóstico molecular não esclarecido. Dos 16 casos confirmados geneticamente: 6 foram no gene GCK, 1 no HNF1A, 1 no HNF4A, 1 no HNF1B, 6 em genes raros associados a MODY (1 no ABCC8, 1 no KCNJ11, 1 no PDX1, 2 no PAX4, 1 no NEUROD1), e 1 no NEUROG3, gene associado a diabetes neonatal. Dentre estas 16 variantes, 2 não haviam sido descritas previamente. As 6 mutações no GCK não tinham sido detectadas na análise prévia por: a) 4 casos falso negativos no sequenciamento por Sanger (3 devido ao fenômeno genético de allelic dropout e 1 por erro na leitura do eletroferograma); b) 2 erros na hipótese clínica inicial do subtipo de MODY (baseada no padrão glicêmico e na resposta terapêutica dos pacientes), levando ao sequenciamento prévio de outro gene. A variante no HNF1A não foi detectada previamente por erro na leitura do eletroferograma (caso falso negativo no Sanger). Uma variante foi identificada no gene HNF4A, que não tinha sido sequenciado anteriormente e apresenta fenótipo semelhante ao do HNF1A. O paciente com variante no HNF1B não apresentava relato prévio de cistos renais ou malformações genito-urinárias e por isso não tinha sido considerada a hipótese clínica de MODY5. Além disso, o SLE confirmou o diagnóstico genético de 6 pacientes com variantes em genes de MODY considerados raros, que habitualmente não são sequenciados na rotina de Sanger e ainda detectou uma variante em um gene de diabetes neonatal (sendo necessário maiores estudos para estabelecer uma relação causal com MODY). Em 13 dos 16 casos índices diagnosticados, os familiares encontravam-se disponíveis para exame genético e a co-segregação foi concordante em 8 famílias. Todos os probandos avaliados apresentavam características clínico-laboratoriais típicas de MODY. Os achados deste estudo mostraram que o SLE foi capaz de aumentar a acurácia no diagnóstico de MODY, permitindo a confirmação molecular de 20% dos casos antes negativos e reduzindo, assim, o número de casos MODY X no Brasil. A abordagem genética por painel de SLE para diagnosticar casos com suspeita clínica de MODY mostrou-se promissora para elucidar as bases genéticas desse tipo de diabetes monogênico / Diabetes mellitus type MODY (maturity-onset diabetes of the young) is characterized by defects in insulin secretion, autosomal dominant inheritance, early onset of hyperglycemia, and negative anti-beta cell antibodies. To date, mutations in 14 genes are associated with MODY. The definitive diagnosis relies on genetic tests, traditionally by Sanger sequencing. However, given the genetic heterogeneity of this condition, added to the difficulty of studying some genes due to their large size and lack of hotspots, large-scale sequencing (LSS) seems promising for cost-effective genetic analysis on suspicion of MODY. In Brazil, there are few cohorts screened for MODY and a high prevalence of MODY X (unclear genetic diagnosis). This study aimed to analyze simultaneously all MODY genes in a cohort of clinically suspected patients using a LSS panel; and to evaluate the pathogenicity of identified allelic variants according to the criteria of the American College of Medical Genetics and Genomics (ACMG). We selected 80 subjects with MODY phenotype and negative previous analysis of the 2 most prevalent genes, GCK and HNF1A, by Sanger sequencing method. These cases were analyzed by LSS method, with simultaneous sequencing of target genes. We designed a customized panel, including 51 nuclear genes and the mitochondrial genome. The identified mutations were correlated to the phenotype and family segregation was evaluated. At least 20x coverage was obtained in 98% of the targeted regions. Of 80 evaluated subjects, pathogenic/probably pathogenic variants were detected in 16 cases (20%), confirming the genetic diagnosis of MODY. In 15 of 80 patients, 16 variants of uncertain significance were identified, remaining 42 cases with unexplained molecular diagnosis. Of the 16 genetically confirmed cases: 6 were in the GCK gene, 1 in HNF1A, 1 in HNF4A, 1 in HNF1B, and 6 in rare genes associated with MODY (1 in ABCC8, 1 in KCNJ11, 1 in PDX1, 2 in PAX4 and 1 in NEUROD1), and 1 in NEUROG3, a gene associated with neonatal diabetes. Of these 16 variants, 2 had not been previously described. Those 6 variants in GCK were not detected in the prior analysis because of: a) 4 false negative cases in Sanger sequencing (allelic dropout had occurred in 3 cases and one variant was overlooked, due to electropherogram interpretation failure); b) 2 errors in the initial clinical hypothesis of the MODY subtype (based on the glycemic pattern and therapeutic response), leading to the prior sequencing of another gene. The variant in HNF1A was not previously identified due to misinterpretation in electropherogram (Sanger false negative case). One variant were detected in the HNF4A gene, not formerly sequenced, and had a similar phenotype to that of HNF1A. The patient with HNF1B variant did not have a previous report of renal cysts or genito-urinary malformations and therefore the clinical hypothesis of MODY5 was not considered. In addition, LSS confirmed the genetic diagnosis of 6 patients harboring variants in MODY genes considered to be rare, which are not usually sequenced in the Sanger routine, and also detected one variant in a neonatal diabetes gene (further studies are necessary to establish a causal relationship with MODY). Relatives were available for genetic testing in 13 of these 16 index cases diagnosed and co-segregation was concordant in 8 families. All probands evaluated showed typical clinical and laboratory characteristics of MODY. These study findings showed that targeted-LSS could increase accuracy in MODY diagnosis, enabling molecular confirmation of 20% of previous negative cases and thus reducing the number of MODY X cases in Brazil. The genetic approach of LSS panel to diagnose cases with clinical suspicion of MODY has shown promise for elucidating the genetic basis of this type of monogenic diabetes
7

Genetic and lipotoxic endoplasmic reticulum stress in pancreatic β cells: a critical process in common and rare forms of diabetes

Lytrivi, Maria 28 May 2020 (has links) (PDF)
ABSTRACTThe prevalence of diabetes is increasing dramatically, incurring a major health and socioeconomic burden. Type 2 diabetes (T2D), the most prevalent form of diabetes, results from a variable combination of insulin resistance and insulin deficiency, secondary to pancreatic β-cell failure. These defects are caused by a complex interplay between genetic and environmental/ lifestyle factors. Among the latter, poor dietary quality is a crucial driver of T2D development. Although adopting healthy dietary habits is considered as a mainstay for T2D prevention, what constitutes a healthy diet remains controversial. Epidemiological studies examining the association of dietary fat quality with T2D incidence have yielded equivocal results and may suffer from confounding. On the other hand, randomized trials assessing the impact of dietary fat saturation on glucose homeostasis have major methodological shortcomings, precluding reliable conclusions. In order to elucidate this question, we compared the effects of palm oil vs olive oil on glucose homeostasis and other relevant metabolic parameters, in a mouse model of high-fat diet-induced obesity. The saturated fatty acid-rich palm oil is the most abundantly used oil worldwide. Olive oil is a staple food of the Mediterranean diet, rich in monounsaturated fatty acids and widely regarded as healthful. In this model, palm oil was not more harmful than olive oil with regard to glucose/insulin homeostasis. However, palm oil was associated with increased visceral adiposity and triglyceridemia compared to olive oil. Circulating and tissue free fatty acid (FFA) concentration and composition are determined by dietary factors, as well as genetic and metabolic factors. There is accumulating evidence indicating that increased FFA levels and/or an unbalanced FFA composition with excess palmitate, induce β-cell dysfunction and apoptosis (lipotoxicity). To characterize the mechanisms underlying lipotoxicity, we combined RNA-sequencing with proteomics of β-cells exposed to palmitate, the most prevalent SFA in humans. This cross-omics study showed that palmitate altered lipid and amino-acid metabolism, and affected amplifying pathways of insulin secretion and exocytosis. Furthermore, palmitate induced stress pathways, including mitochondrial dysfunction, oxidative stress and endoplasmic reticulum (ER) stress. ER stress is triggered when protein folding demand exceeds ER folding capacity. This response aims to restore ER homeostasis but if unresolved, it can become deleterious. Islets from T2D patients display signs of ER stress, pointing to a potentially pathogenic role of the latter.Monogenic and neonatal diabetes are rare forms of diabetes caused by single gene mutations. These forms are of particular interest, as they can serve as ‘human knockout’ models of diabetes. Recent evidence shows that there is overlap in the genetic basis of monogenic diabetes and T2D, suggesting that they may be part of a pathologic continuum. To explore the role of ER stress in diabetes pathogenesis, we studied two different genetic syndromes involving neonatal or early-onset diabetes, caused by mutations in genes related to ER function (DNAJC3 and YIPF5). Using in vitro knockdown models, we showed that ER stress elicited by impaired chaperone function (DNAJC3) or by impaired ER-to-Golgi protein transport (YIFP5) causes β-cell apoptosis. Altogether, our findings support that lipotoxic and genetic ER stress contribute to diabetes pathogenesis. Preventing or modulating ER stress thus holds anti-diabetic therapeutic potential. Future research should focus on defining optimal strategies to restore a balanced FFA profile and enhance ER function, aiming to prevent ER-stress induced β-cell failure. RésuméLa prévalence du diabète progresse constamment, posant un défi sanitaire et socioéconomique majeur. Le diabète de type 2 (DT2), la forme la plus courante de diabète, résulte de la résistance à l’insuline, en association avec un déficit insulinique dû à la défaillance des cellules β pancréatiques. Ces anomalies découlent d’une interaction complexe entre des facteurs génétiques et des facteurs liés au mode de vie. Parmi ces derniers, la qualité du régime alimentaire est un facteur crucial pour le développement du DT2. Bien que le suivi d’un régime alimentaire sain est considéré comme le pilier pour la prévention du DT2, ce qui constitue un régime sain demeure un sujet de controverse.Les études épidémiologiques examinant l’association entre la qualité de la graisse alimentaire et l’incidence du DT2 ont donné des résultats équivoques, affectés éventuellement par des facteurs confondants. En outre, les études randomisées évaluant l’impact du degré de saturation de la graisse alimentaire sur l’homéostasie du glucose comportent des limitations méthodologiques majeures. Afin d’élucider cette question, on a comparé les effets de l’huile de palme aux effets de l’huile d’olive sur l’homéostasie du glucose et d’autres paramètres métaboliques pertinents. Dans ce but, on a utilisé un modèle murin d’obésité induite par un régime riche en graisse. L’huile de palme est riche en acides gras saturés et elle est l’huile la plus utilisée globalement. L’huile d’olive est un aliment phare du régime Méditerranéen, riche en acides gras monoinsaturés et généralement reconnu comme un aliment sain. Dans notre modèle murin, la consommation d’huile de palme n’était pas plus néfaste que celle de l’huile d’olive sur l’homéostasie du glucose, la sensibilité à l’insuline et l’insulinosécrétion. Par contre, l’huile de palme était associée à une adiposité viscérale et une triglycéridémie plus élevée comparée à l’huile d’olive.La concentration et la composition des acides gras libres (AGL) sont déterminées par des facteurs alimentaires, génétiques et métaboliques. Des données abondantes démontrent que la présence des niveaux élevés d’AGL et/ou d’une composition déséquilibrée d’AGL induit la dysfonction et l’apoptose des cellules β (lipotoxicité). Pour caractériser les mécanismes sous-jacents de la lipotoxicité, on a combiné un séquençage ARN à une étude protéomique des cellules β exposées au palmitate, l’AGL saturé le plus courant chez l’homme. Cette étude conjointe a montré que le palmitate altère le métabolisme des lipides et des acides aminés, les voies d’amplification de la sécrétion d’insuline et l’exocytose. Le palmitate induit également des voies de stress cellulaires, telles que la dysfonction mitochondriale, le stress oxydatif et le stress du réticulum endoplasmique (RE). Le stress du RE est activé quand les besoins en sécrétion protéique dépassent les capacités de l’organite. Cette réponse a pour but de rétablir l’homéostasie du RE mais si le stress reste non résolu, ceci peut s’avérer délétère. Des îlots des patients avec un DT2 montrent des signes de stress du RE, évoquant un rôle potentiellement pathogénique de ce dernier.Le diabète monogénique et néonatal sont des formes rares de diabète causées par des mutations d’un seul gène. Ces formes sont particulièrement intéressantes sur le plan physiopathologique car elles représentent des ‘knockout’ humains. Des données récentes montrent que la base génétique du diabète monogénique n’est pas complètement distincte de celle du diabète de type 2 et les deux entités pourraient faire partie d’un continuum. Afin d’explorer le rôle du stress du RE dans la pathogénèse du diabète, on a étudié deux syndromes génétiques entraînant un diabète néonatal ou à début très précoce. Ces syndromes sont causés par des mutations dans des gènes impliqués dans la fonction du RE (DNAJC3 et YIPF5). En silençant ces gènes in vitro, on a montré que le stress du RE, déclenché soit par une dysfonction des chaperones (DNAJC3), soit par un retard du trafic de protéines du RE vers le Golgi (YIPF5), induit l’apoptose des cellules β.Ces résultats suggèrent que le stress du RE génétique et lipotoxique contribuent à la pathogénèse du diabète. La prévention ou modulation du stress du RE présente donc un potentiel thérapeutique anti-diabétique. Des études futures pourraient permettre de définir des stratégies optimales pour rétablir un profil d’AGL équilibré ou renforcer la fonction du RE, en vue de prévenir la défaillance des cellules β. / Doctorat en Sciences médicales (Médecine) / info:eu-repo/semantics/nonPublished
8

Análise genético-molecular por sequenciamento paralelo em larga escala de portadores das formas raras de diabetes monogênico e lipodistrofias hereditárias / Targeted massively parallel sequencing for rare monogenic diabetes forms and inherited lipodystrophy

Riquetto, Aline Dantas Costa 05 April 2019 (has links)
Introdução: O diabetes monogênico corresponde de 1% a 2% de todos os casos de diabetes mellitus, sendo causado por variantes em um único gene. Dentre esses, o mais comum é o MODY (Maturity Onset Diabetes of the Young), havendo, porém, diversas formas mais raras, como diabetes neonatal e sindrômico que podem estar associadas a outras comorbidades além do diabetes, bem como às lipodistrofias hereditárias. O diagnóstico genético permite a adequação do tratamento, seguimento clínico e aconselhamento familiar. Objetivos: (1) desenvolver e implantar um painel customizado de sequenciamento em larga escala para o diagnóstico genético-molecular das formas raras de diabetes monogênico e lipodistrofias hereditárias; (2) estabelecer o diagnóstico genético de casos com suspeita clínica; (3) realizar a correlação genótipo-fenótipo. Métodos: Os pacientes foram selecionados de acordo com os critérios de inclusão para cada tipo de diabetes monogênico raro. A pesquisa genética dos casos-índice foi feita por sequenciamento em larga escala. A segregação familiar e confirmação dos achados foram feitas pelo método de Sanger. A análise de bioinformática foi realizada considerando o tipo de variante, frequência em bancos de dados populacionais, predição in silico e segregação familiar. Resultados: Foram analisados 42 casos, sendo que em 23 foram encontradas variantes candidatas: 6/16 com diagnóstico de diabetes neonatal, 2/2 com quadro clínico de Síndrome de Wolfram, 11/11 com suspeita de lipodistrofia congênita generalizada, 4/13 com lipodistrofia parcial familiar. Conclusões: Um painel customizado de sequenciamento em larga escala permitiu o diagnóstico genético-molecular de diabetes monogênico, com positividade de 22/42 casos analisados, sendo possível realizar a correlação genótipofenótipo. O diagnóstico genético possibilitou o aprimoramento do seguimento clínico dos pacientes e suas famílias. Permitiu, ainda, aumentar o número de diagnósticos de casos anteriormente subdiagnosticados / Introduction: Monogenic Diabetes accounts for 1 to 2% of all cases of diabetes mellitus. It is caused for variants in a single gene. Among these, the most common is MODY (Maturity Onset Diabetes of the Young), but there are several other rare forms, which may be associated with other comorbidities besides diabetes. Genetic diagnosis can lead to appropriate treatment and follow-up, besides and family counseling. Objectives: (1) to develop a customized targeted massively parallel sequencing panel to sequence the rare types of monogenic diabetes; (2) To establish the genetic diagnosis of probands with clinical suspicion of monogenic diabetes; (3) To correlate their phenotype with genetic findings, leading to a better understanding of rare monogenic diabetes subtypes. Methods: Patients were selected according to the inclusion criteria for each type of rare monogenic diabetes. Genetic research of index cases was done by massively parallel sequencing. Family segregation and confirmation of the variants findings were done by Sanger method. Bioinformatics analysis was performed considering the type of variant, frequency in population databases, in silico prediction and family segregation. Results: We analyzed a total of 42 cases. We found 22 candidate causal variants: 6/16 in probands with Neonatal Diabetes, 2/2 with Wolfram Syndrome, 11/11 with suspected Generalized Congenital Lipodystrophy, and 4/13 with Familial Partial Lipodystrophy. Conclusions: A customized targeted massively parallel sequencing panel allowed genetic diagnosis of rare types of monogenic diabetes, with a positivity of 23/42 cases analyzed, being possible to perform the genotype-phenotype correlation. The genetic diagnosis allowed the improvement of the clinical follow-up of the patients and their families. It also increased the number of diagnoses of previously underdiagnosed cases

Page generated in 0.1361 seconds