1 |
On the Existence of Characterization Logics and Fundamental Properties of Argumentation SemanticsBaumann, Ringo 18 December 2019 (has links)
Given the large variety of existing logical formalisms it is of utmost importance
to select the most adequate one for a specific purpose, e.g. for representing
the knowledge relevant for a particular application or for using the formalism
as a modeling tool for problem solving. Awareness of the nature of a logical
formalism, in other words, of its fundamental intrinsic properties, is indispensable
and provides the basis of an informed choice.
One such intrinsic property of logic-based knowledge representation languages
is the context-dependency of pieces of knowledge. In classical propositional
logic, for example, there is no such context-dependence: whenever two
sets of formulas are equivalent in the sense of having the same models (ordinary
equivalence), then they are mutually replaceable in arbitrary contexts (strong
equivalence). However, a large number of commonly used formalisms are not
like classical logic which leads to a series of interesting developments. It turned
out that sometimes, to characterize strong equivalence in formalism L, we can
use ordinary equivalence in formalism L0: for example, strong equivalence in
normal logic programs under stable models can be characterized by the standard
semantics of the logic of here-and-there. Such results about the existence of
characterizing logics has rightly been recognized as important for the study of
concrete knowledge representation formalisms and raise a fundamental question:
Does every formalism have one? In this thesis, we answer this question
with a qualified “yes”. More precisely, we show that the important case of
considering only finite knowledge bases guarantees the existence of a canonical
characterizing formalism. Furthermore, we argue that those characterizing
formalisms can be seen as classical, monotonic logics which are uniquely determined (up to isomorphism) regarding their model theory.
The other main part of this thesis is devoted to argumentation semantics
which play the flagship role in Dung’s abstract argumentation theory. Almost
all of them are motivated by an easily understandable intuition of what should
be acceptable in the light of conflicts. However, although these intuitions equip
us with short and comprehensible formal definitions it turned out that their
intrinsic properties such as existence and uniqueness, expressibility, replaceability
and verifiability are not that easily accessible. We review the mentioned
properties for almost all semantics available in the literature. In doing so we
include two main axes: namely first, the distinction between extension-based
and labelling-based versions and secondly, the distinction of different kind of
argumentation frameworks such as finite or unrestricted ones.
|
2 |
Symétries locales et globales en logique propositionnelle et leurs extensions aux logiques non monotonesNabhani, Tarek 09 December 2011 (has links)
La symétrie est par définition un concept multidisciplinaire. Il apparaît dans de nombreux domaines. En général, elle revient à une transformation qui laisse invariant un objet. Le problème de satisfaisabilité (SAT) occupe un rôle central en théorie de la complexité. Il est le problème de décision de référence de la classe NP-complet (Cook, 71). Il consiste à déterminer si une formule CNF admet ou non une valuation qui la rend vraie. Dans la première contribution de ce mémoire, nous avons introduit une nouvelle méthode complète qui élimine toutes les symétries locales pour la résolution du problème SAT en exploitant son groupe des symétries. Les résultats obtenus montrent que l'exploitation des symétries locales est meilleure que l'exploitation des symétries globales sur certaines instances SAT et que les deux types de symétries sont complémentaires, leur combinaison donne une meilleure exploitation.En deuxième contribution, nous proposons une approche d'apprentissage de clauses pour les solveurs SAT modernes en utilisant les symétries. Cette méthode n'élimine pas les modèles symétriques comme font les méthodes statiques d'élimination des symétries. Elle évite d'explorer des sous-espaces correspondant aux no-goods symétriques de l'interprétation partielle courante. Les résultats obtenus montrent que l'utilisation de ces symétries et ce nouveau schéma d'apprentissage est profitable pour les solveurs CDCL.En Intelligence Artificielle, on inclut souvent la non-monotonie et l'incertitude dans le raisonnement sur les connaissances avec exceptions. Pour cela, en troisième et dernière contribution, nous avons étendu la notion de symétrie à des logiques non classiques (non-monotones) telles que les logiques préférentielles, les X-logiques et les logiques des défauts.Nous avons montré comment raisonner par symétrie dans ces logiques et nous avons mis en évidence l'existence de certaines symétries dans ces logiques qui n'existent pas dans les logiques classiques. / Symmetry is by definition a multidisciplinary concept. It appears in many fields. In general, it is a transformation which leaves an object invariant. The problem of satisfiability (SAT) is one of the central problems in the complexity theory. It is the first decision Np-complete problem (Cook, 71). It deals with determining if a CNF formula admits a valuation which makes it true. First we introduce a new method which eliminates all the local symmetries during the resolution of a SAT problem by exploiting its group of symmetries. Our experimental results show that for some SAT instances, exploiting local symmetries is better than exploiting just global symmetries and both types of symmetries are complementary. As a second contribution, we propose a new approach of Conflict-Driven Clause Learning based on symmetry. This method does not eliminate the symmetrical models as the static symmetry elimination methods do. It avoids exploring sub-spaces corresponding to symmetrical No-goods of the current partial interpretation. Our experimental results show that using symmetries in clause learning is advantageous for CDCL solvers.In artificial intelligence, we usually include non-monotony and uncertainty in the reasoning on knowledge with exceptions. Finally, we extended the concept of symmetry to non-classical logics that are preferential logics, X-logics and default logics. We showed how to reason by symmetry in these logics and we prove the existence of some symmetries in these non-classical logics which do not exist in classical logics.
|
Page generated in 0.0592 seconds