1 |
Incremental Verification of Timing Constraints for Real-Time SystemsAndrei, Åtefan, Chin, Wei Ngan, Rinard, Martin C. 01 1900 (has links)
Testing constraints for real-time systems are usually verified through the satisfiability of propositional formulae. In this paper, we propose an alternative where the verification of timing constraints can be done by counting the number of truth assignments instead of boolean satisfiability. This number can also tell us how “far away” is a given specification from satisfying its safety assertion. Furthermore, specifications and safety assertions are often modified in an incremental fashion, where problematic bugs are fixed one at a time. To support this development, we propose an incremental algorithm for counting satisfiability. Our proposed incremental algorithm is optimal as no unnecessary nodes are created during each counting. This works for the class of path RTL. To illustrate this application, we show how incremental satisfiability counting can be applied to a well-known rail-road crossing example, particularly when its specification is still being refined. / Singapore-MIT Alliance (SMA)
|
2 |
Akcelerace částicových rojů PSO pomocí GPU / Acceleration of Particle Swarm Optimization Using GPUsKrézek, Vladimír January 2012 (has links)
This work deals with the PSO technique (Particle Swarm Optimization), which is capable to solve complex problems. This technique can be used for solving complex combinatorial problems (the traveling salesman problem, the tasks of knapsack), design of integrated circuits and antennas, in fields such as biomedicine, robotics, artificial intelligence or finance. Although the PSO algorithm is very efficient, the time required to seek out appropriate solutions for real problems often makes the task intractable. The goal of this work is to accelerate the execution time of this algorithm by the usage of Graphics processors (GPU), which offers higher computing potential while preserving the favorable price and size. The boolean satisfiability problem (SAT) was chosen to verify and benchmark the implementation. As the SAT problem belongs to the class of the NP-complete problems, any reduction of the solution time may broaden the class of tractable problems and bring us new interesting knowledge.
|
3 |
DNA výpočty a jejich aplikace / DNA Computing and ApplicationsFiala, Jan January 2014 (has links)
This thesis focuses on the design and implementation of an application involving the principles of DNA computing simulation for solving some selected problems. DNA computing represents an unconventional computing paradigm that is totally different from the concept of electronic computers. The main idea of DNA computing is to interpret the DNA as a medium for performing computation. Despite the fact, that DNA reactions are slower than operations performed on computers, they may provide some promising features in the future. The DNA operations are based on two important aspects: massive parallelism and principle of complementarity. There are many important problems for which there is no algorithm that would be able to solve the problem in a polynomial time using conventional computers. Therefore, the solutions of such problems are searched by exploring the entire state space. In this case the massive parallelism of the DNA operations becomes very important in order to reduce the complexity of finding a solution.
|
4 |
Evoluční algoritmy v úloze booleovské splnitelnosti / Evolutionary Algorithms in the Task of Boolean SatisfiabilitySerédi, Silvester January 2013 (has links)
The goal of this Master's Thesis is finding a SAT solving heuristic by the application of an evolutionary algorithm. This thesis surveys various approaches used in SAT solving and some variants of evolutionary algorithms that are relevant to this topic. Afterwards the implementation of a linear genetic programming system that searches for a suitable heuristic for SAT problem instances is described, together with the implementation of a custom SAT solver which expoloits the output of the genetic program. Finally, the achieved results are summarized.
|
5 |
Symétries locales et globales en logique propositionnelle et leurs extensions aux logiques non monotonesNabhani, Tarek 09 December 2011 (has links)
La symétrie est par définition un concept multidisciplinaire. Il apparaît dans de nombreux domaines. En général, elle revient à une transformation qui laisse invariant un objet. Le problème de satisfaisabilité (SAT) occupe un rôle central en théorie de la complexité. Il est le problème de décision de référence de la classe NP-complet (Cook, 71). Il consiste à déterminer si une formule CNF admet ou non une valuation qui la rend vraie. Dans la première contribution de ce mémoire, nous avons introduit une nouvelle méthode complète qui élimine toutes les symétries locales pour la résolution du problème SAT en exploitant son groupe des symétries. Les résultats obtenus montrent que l'exploitation des symétries locales est meilleure que l'exploitation des symétries globales sur certaines instances SAT et que les deux types de symétries sont complémentaires, leur combinaison donne une meilleure exploitation.En deuxième contribution, nous proposons une approche d'apprentissage de clauses pour les solveurs SAT modernes en utilisant les symétries. Cette méthode n'élimine pas les modèles symétriques comme font les méthodes statiques d'élimination des symétries. Elle évite d'explorer des sous-espaces correspondant aux no-goods symétriques de l'interprétation partielle courante. Les résultats obtenus montrent que l'utilisation de ces symétries et ce nouveau schéma d'apprentissage est profitable pour les solveurs CDCL.En Intelligence Artificielle, on inclut souvent la non-monotonie et l'incertitude dans le raisonnement sur les connaissances avec exceptions. Pour cela, en troisième et dernière contribution, nous avons étendu la notion de symétrie à des logiques non classiques (non-monotones) telles que les logiques préférentielles, les X-logiques et les logiques des défauts.Nous avons montré comment raisonner par symétrie dans ces logiques et nous avons mis en évidence l'existence de certaines symétries dans ces logiques qui n'existent pas dans les logiques classiques. / Symmetry is by definition a multidisciplinary concept. It appears in many fields. In general, it is a transformation which leaves an object invariant. The problem of satisfiability (SAT) is one of the central problems in the complexity theory. It is the first decision Np-complete problem (Cook, 71). It deals with determining if a CNF formula admits a valuation which makes it true. First we introduce a new method which eliminates all the local symmetries during the resolution of a SAT problem by exploiting its group of symmetries. Our experimental results show that for some SAT instances, exploiting local symmetries is better than exploiting just global symmetries and both types of symmetries are complementary. As a second contribution, we propose a new approach of Conflict-Driven Clause Learning based on symmetry. This method does not eliminate the symmetrical models as the static symmetry elimination methods do. It avoids exploring sub-spaces corresponding to symmetrical No-goods of the current partial interpretation. Our experimental results show that using symmetries in clause learning is advantageous for CDCL solvers.In artificial intelligence, we usually include non-monotony and uncertainty in the reasoning on knowledge with exceptions. Finally, we extended the concept of symmetry to non-classical logics that are preferential logics, X-logics and default logics. We showed how to reason by symmetry in these logics and we prove the existence of some symmetries in these non-classical logics which do not exist in classical logics.
|
Page generated in 0.5338 seconds