• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optical and Mechanical Properties of Thin Film Metallic Glasses

Hu, Ting-ting 23 July 2012 (has links)
This study is separated into two parts. Firstly, the Ag thin film was deposited on substrates with different average roughness by sputtering to examine the effect of substrate roughness on optical reflection. The results exhibit 10 percent difference of reflectivity within several nanometer changing in average roughness, indicating the reflectivity is easily affected by surface roughness. Secondly, optical reflectivity and electrical resistivity of multi-component AgMgAl alloys, both crystalline and amorphous, were measured. The crystalline alloys exhibit high reflection in infrared region but a steeper drop in visible and ultraviolet regions. By contrast, amorphous alloys show a lower but relatively uniform reflectivity in the visible and infrared regions. In both cases, the reflectivity was observed to scale with the square root of electrical resistivity. The scaling law was explained based on classical reflection theory. The different scaling factors for crystalline and amorphous alloys could be rationalized by the difference in the mean free time of charge carriers. Moreover, the mechanical properties of crystalline and amorphous thin film alloys, including hardness and modulus, were measured by nanoindentation. The hardness of thin film metallic glasses (TFMGs) is obviously higher than crystalline metals, while the modulus of TFMGs is similar to crystalline metals.

Page generated in 0.1061 seconds