• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • Tagged with
  • 16
  • 16
  • 11
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Global Approach to Disease Prevention: Predicting High Risk Areas for West Nile Infection in the Us

DallaPiazza, Kristin Lee 05 June 2009 (has links)
WN virus has spread for over 60 years creating endemic and epidemic areas throughout Africa, Asia, and Europe, affecting human, bird, and equine populations. Its 1999 appearance in New York shows the ability of the virus to cross barriers and travel great distances, emerging into new territories previously free of infection. Spreading much faster than expected, WN virus has infected thousands of birds, equine, and humans throughout the conterminous United States (US). Case and serological studies performed in the Eastern hemisphere prior to 1999 offer detailed descriptions of endemic and epidemic locations in regards to geography, land cover, land use, population, climate, and weather patterns. Based on the severity of WN activity within each study area, the patterns associated with these environmental factors allow for the identification of values associated with different levels of risk. We can then model the landscape of the disease within the US and identify areas of high risk for infection. State and county public health officials can use this model as a decision-making tool to allocate funding for disease prevention and control. Dynamic factors associated with increased transmission, such as above average temperature and precipitation, can be closely monitored and measures of prevention can be implemented when necessary. In turn, detailed information from higher resolution analyses can be documented to an online GIS (Geographic Information System) that would contribute to a global collaboration on outbreaks and prevention of disease. / Master of Science
12

Aedes aegypti and Dengue in the Philippines: Centering History and Critiquing Ecological and Public Health Approaches to Mosquito-borne Disease in the Greater Asian Pacific

Pettis, Maria R 01 January 2017 (has links)
The global incidence of dengue has increase 30-fold over the past 50 years in the western or Asian Pacific, this region is also a contemporary epicenter for resource extraction and ecological destabilization. Dengue is addition to yellow fever, chikungunya and most recently zika virus, are transmitted by the mosquito vector Aedes aegypti- a domesticated mosquito adept at breeding in artificial household containers and within homes. The history of the domestication and global distribution of Aedes aegypti is intrinsically linked to European expansion into and among tropical worlds. Contemporary population genetics research suggest the westward expansion of the mosquito vector beginning with trans-Atlantic Slave Trade moving to the Americas and then making a jump across the Pacific, which I argue occurred first within the Philippines and then spread eastward through the greater Indian Ocean. I argue that Spanish and American colonization facilitated the biological invasion of Ae. aegypti and dengue in the Philippines and created the conditions for contemporary epidemics. The discourse within the dominant voices of public health, CDC and WHO, omit this history as well as down play the significance of land use and deforestation while focusing predominantly upon dengue’s prevention and control. This omission is an act of erasure and a means of furthering western imperialism through paternalistic interventions. Mosquito-borne disease epidemics are unintended consequences of past human action and if public health discourse continues to frame epidemics as random and unfortunate events, we risk missing key patterns and continuing to perpetuate the circumstances of disease and adaptation.
13

West Nile virus in Maricopa County, Arizona: Investigating human, vector, and environmental interactions

January 2013 (has links)
abstract: Despite the arid climate of Maricopa County, Arizona, vector-borne diseases have presented significant health challenges to the residents and public health professionals of Maricopa County in the past, and will continue to do so in the foreseeable future. Currently, West Nile virus is the only mosquitoes-transmitted disease actively, and natively, transmitted throughout the state of Arizona. In an effort to gain a more complete understanding of the transmission dynamics of West Nile virus this thesis examines human, vector, and environment interactions as they exist within Maricopa County. Through ethnographic and geographic information systems research methods this thesis identifies 1) the individual factors that influence residents' knowledge and behaviors regarding mosquitoes, 2) the individual and regional factors that influence residents' knowledge of mosquito ecology and the spatial distribution of local mosquito populations, and 3) the environmental, demographic, and socioeconomic factors that influence mosquito abundance within Maricopa County. By identifying the factors that influence human-vector and vector-environment interactions, the results of this thesis may influence current and future educational and mosquito control efforts throughout Maricopa County. / Dissertation/Thesis / M.S. Sustainability 2013
14

Developing a Guide and Template to Aid the Preparation of Mosquito Surveillance Plans in Ohio

Flynn, Rebecca Anne 16 July 2018 (has links)
No description available.
15

Epidemiology of Ross River virus in the south-west of Western Australia and an assessment of genotype involvement in Ross River virus pathogenesis

Prow, Natalie A January 2006 (has links)
[Truncated abstract] Ross River virus (RRV) causes the most common arboviral disease in Australia, with approximately 5000 new cases reported each year, making this virus a major public health concern. The aim of this thesis was to link results from virological, pathogenesis and epidemiological studies to further define RRV disease in the south-west (SW) of Western Australia (WA), a region of endemic and epizootic RRV activity. A crosssectional seroprevalence study was used to show that 7.8 percent of SW communities were seropositive to RRV, comparable to other regions of Australia with similar temperate climates to the SW . . . RRV-specific IgM antibodies were found to persist for at least two years following RRV infection. A murine model was used to conclusively show differences in pathogenesis between RRV genotypes, the SW and northern-eastern (NE) genotypes, which are known to circulate throughout Australia. The SW genotype, unique to the SW of WA induced only poor neutralising antibody production and nonneutralising antibodies after the acute phase of infection. In comparison, the NE genotype which currently predominates in mosquito populations in the SW of WA, induced the most efficient neutralising antibody response and consequently produced the mildest disease in the mouse. These data in the mouse suggest that the infecting genotype will mostly likely influence disease outcome in humans and could at least partially explain why more severe and persistent disease has been reported from the SW of WA. Collectively, results from this thesis provide an important benchmark against which future investigations into BFV and RRV diseases can be measured.
16

The impact of dryland salinity on Ross River virus in south-western Australia : an ecosystem health perspective

Jardine, Andrew January 2007 (has links)
[Truncated abstract] A functional ecosystem is increasingly being recognised as a requirement for health and well being of resident human populations. Clearing of native vegetation for agriculture has left 1.047 million hectares of south-west Western Australia affected by a severe form of environmental degradation, dryland salinity, characterised by secondary soil salinisation and waterlogging. This area may expand by a further 1.7-3.4 million hectares if current trends continue. Ecosystems in saline affected regions display many of the classic characteristics of Ecosystem Distress Syndrome (EDS). One outcome of EDS that has not yet been investigated in relation to dryland salinity is adverse human health implications. This thesis focuses on one such potential adverse health outcome: increased incidence of Ross River virus (RRV), the most common mosquito-borne disease in Australia. Spatial analysis of RRV notifications did not reveal a significant association with dryland salinity. To overcome inherent limitations with notification data, serological RRV antibody prevalence was also investigated, and again no significant association with dryland salinity was detected. However, the spatial scale imposed limited the sensitivity of both studies. ... This thesis represents the first attempt to prospectively investigate the influence of secondary soil salinity on mosquito-borne disease by combining entomological, environmental and epidemiological data. The evidence collected indicates that RRV disease incidence is not currently a significant population health priority in areas affected by dryland salinity despite the dominant presence of Ae. camptorhynchus. Potential limiting factors include; local climatic impact on the seasonal mosquito population dynamics; vertebrate host distribution and feeding behaviour of Ae. camptorhynchus; and the scarce and uneven human population distribution across the region. However, the potential for increased disease risk in dryland salinity affected areas to become apparent in the future cannot be discounted, particularly in light of the increasing extent predicted to develop over coming decades before any benefits of amelioration strategies are observed. Finally, it is important to note that both dryland salinity and salinity induced by irrigation are important forms of environmental degradation in arid and semi-arid worldwide, with a total population of over 400 million people. Potential health risks will of course vary widely across different regions depending on a range of factors specific to the local region and the complex interactions between them. It is therefore not possible to make broad generalisations. The need is highlighted for similar research in other regions and it is contended that an ecosystem health framework provides the necessary basis for such investigations.

Page generated in 0.0365 seconds