• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 12
  • 9
  • 9
  • 7
  • 5
  • 2
  • 1
  • Tagged with
  • 105
  • 24
  • 20
  • 19
  • 15
  • 15
  • 15
  • 15
  • 14
  • 12
  • 12
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

ASSESSING THE STATE-DEPENDENT BEHAVIOR OF HUMAN SPINAL MOTONEURONS

Taylor, Christopher, 0000-0003-0609-6624 January 2023 (has links)
Spinal motoneurons (MNs) relay neural commands from the brain to the muscles to produce functional movement. However, MNs are more than passive conduits of neural commands; they also shape motor output through alterations in their intrinsic excitability. These alterations allow MNs to modify (e.g., amplify and/or prolong) motor output even in the absence of descending motor commands. How MNs respond to this modulation, under various conditions, is not fully understood. In the scope of this dissertation, we leverage high-density electromyography and motor unit decomposition algorithms to investigate how human MNs behave in (Aim 1) different muscles under similar task demands; (Aim 2) the same muscle under different task demands; and (Aim 3) in response to exogenous neuromodulation. First, in Aim 1 we demonstrate that MN excitability varies across motor pools and, thus, may be functionally tuned to the task and its muscle-specific demands. The results indicate that the MN discharge rates were significantly higher in the first dorsal interosseous, a small hand muscle used for fine motor control. Conversely, higher MN excitability was observed within the tibialis anterior, a lower leg muscle involved in balance and locomotion. Next, in Aim 2 we show that a muscle (i.e., the biceps brachii) with multiple biomechanical functions (e.g., supination and flexion) receives differential synaptic input to perform each action while the MN discharge characteristics remain the same. Finally, in Aim 3 we demonstrate that a single cup of coffee can alter fundamental motor control mechanisms by increasing discharge rate, inter-pulse variability, and excitability through caffeine-induced neuromodulation. Collectively, findings from this dissertation demonstrate the human motor system’s tremendous ability to adapt to internal and external states. / Public Health
32

Axonal hnRNP R: regulation by Ptbp2 and functions in neurodegenerative disorders / Axonales hnRNP R: Regulation durch Ptbp2 und Funktionen bei neurodegenerativen Erkrankungen

Salehi, Saeede January 2024 (has links) (PDF)
Axon growth, a fundamental process of neuron development, is regulated by both intrinsic and external guidance signals. Impairment of axon growth and maintenance is implicated in the pathogenesis of neurodegenerative disorders such as Amyotrophic Lateral Sclerosis and Alzheimer’s disease (AD). Axon growth is driven by several post-transcriptional RNA processing mechanisms, including alternative splicing, polyadenylation, subcellular localization, and translation. These mechanisms are controlled by RNA-binding proteins (RBPs) through interacting with their target RNAs in a sequence-dependent manner. In this study, we investigate the cytosolic functions of two neuronal RBPs, Ptbp2 and hnRNP R, which are essential for axon growth in motoneurons. Polypyrimidine tract binding protein 2 (Ptbp2) contributes to neuronal differentiation and axonogenesis by modulating different splicing programs to adjust the level of proteins involved in these processes. While the nuclear functions of Ptbp2 in alternative splicing have been studied in more detail, the cytosolic roles of Ptbp2 associated with axon growth have remained elusive. In the first part of the study, we show that Ptbp2 is present in cytosolic fractions of motoneurons including axons and axon terminals. Depletion of Ptbp2 impairs axon growth and growth cone maturation in cultured embryonic mouse motoneurons. Moreover, Ptbp2 knockdown affects the level of piccolo protein in the growth cone of cultured motoneurons. We detect Ptbp2 as a top interactor of the 3' UTR of the Hnrnpr transcript encoding the RBP hnRNP R. This interaction results in axonal localization of and thereby local translation of Hnrnpr mRNA in motoneurons. Consequently, axonal synthesis of hnRNP R was diminished upon depletion of Ptbp2 in motoneurons. We present evidence that Ptbp2 through cooperation with translation factor eIF5A2 controls hnRNP R synthesis. Additionally, we observe that re-expression of hnRNP R in Ptbp2-deficient motoneurons rescued axon growth defect while Ptbp2 overexpression failed to normalize the axon elongation defect observed in hnRNP R-deficient motoneurons. Our findings pinpoint axonal synthesized hnRNP R as a mediator of Ptbp2 functions in axon growth. In the second part of this study, we identify hnRNP R binds to the 3' UTR of microtubule-associated tau (Mapt) transcript encoding tau protein and regulates the axonal translocation and translation of Mapt mRNA. Tau protein has a central role in neuronal microtubule assembly and stability. However, in AD, the accumulation of abnormally hyperphosphorylated tau protein leads to axon outgrowth defects. Loss of hnRNP R reduces axonal tau protein but not the total level of tau. We observe that the brains of 5xFAD mice, as a mouse model of AD, deficient for hnRNP R contain lower phospho-tau and amyloid-β plaques. Likewise, Neurons treated with blocking antisense oligonucleotides (ASO) to prevent binding of hnRNP R to Mapt mRNA show reduced axonal Mapt mRNA and consequently newly synthesized tau protein levels. We show that blocking Mapt mRNA transport to axons impairs axon elongation. Our data thus suggest that reducing tau levels selectively in axons, a major subcellular site of tangle formation, might represent a novel therapeutic approach for the treatment of AD. / Axonwachstum ist ein grundlegender Prozess der Neuronenentwicklung und wird sowohl durch intrinsische als auch externe Leitsignale reguliert. Eine Beeinträchtigung des Axonwachstums und der Aufrechterhaltung von Axonen ist mit der Pathogenese neurodegenerativer Erkrankungen wie der Amyotrophen Lateralsklerose und der AlzheimerKrankheit (AD) verbunden. Mehrere posttranskriptionelle RNA-Verarbeitungsmechanismen, darunter alternatives Spleißen, Polyadenylierung, subzelluläre Lokalisierung und Translation, steuern das Axonwachstum. RNA-bindende Proteine (RBPs) steuern diese Mechanismen, indem sie sequenzabhängig mit ihren Ziel-RNAs interagieren. In dieser Studie untersuchen wir die zytosolischen Funktionen von zwei neuronalen RBPs, Ptbp2 und hnRNP R, die für das Axonwachstum in Motoneuronen essentiell sind. Das Polypyrimidin-Trakt-Bindungsprotein 2 (Ptbp2) trägt zur neuronalen Differenzierung und Axonogenese bei, indem es verschiedene Spleißprogramme moduliert, um die Menge der an diesen Prozessen beteiligten Proteine anzupassen. Während die nukleären Funktionen von Ptbp2 beim alternativen Spleißen detaillierter untersucht wurden, sind die zytosolischen Rollen von Ptbp2 im Zusammenhang mit dem Axonwachstum noch unklar. Im ersten Teil der Studie zeigen wir, dass Ptbp2 in zytosolischen Fraktionen von Motoneuronen einschließlich Axonen und Axonterminals vorhanden ist. Die Reduktion von Ptbp2 beeinträchtigt das Axonwachstum und die Reifung der Wachstumskegel in kultivierten embryonalen Motoneuronen von Mäusen. Darüber hinaus beeinflusst der Ptbp2-Knockdown den Gehalt an Piccolo-Protein im Wachstumskegel kultivierter Motoneuronen. Wir identifizierten Ptbp2 als Top-Interaktor der 3'-UTR des Hnrnpr-Transkripts, welches das RBP hnRNP R kodiert. Diese Interaktion führt zur axonalen Lokalisierung und damit zur lokalen Translation der Hnrnpr-mRNA in Motoneuronen. Folglich wurde die axonale Synthese von hnRNP R durch Depletion von Ptbp2 in Motoneuronen verringert. Wir legen Beweise dafür vor, dass Ptbp2 durch die Zusammenarbeit mit dem Translationsfaktor eIF5A2 die hnRNP R-Synthese steuert. Darüber hinaus beobachten wir, dass die erneute Expression von hnRNP R in Motoneuronen mit Ptbp2-Mangel den Axonwachstumsdefekt rettete, während die Überexpression von Ptbp2 den auch bei Motoneuronen mit hnRNP R-Mangel beobachteten Axonwachstumsdefekt nicht normalisieren konnte. Unsere Ergebnisse zeigen, dass axonal synthetisiertes hnRNP R ein Vermittler der Ptbp2-Funktionen beim Axonwachstum ist. Im zweiten Teil dieser Studie beobachteten wir, dass hnRNP R an die 3'-UTR des Mikrotubuliassoziierten Tau-Transkripts (Mapt) bindet, welches das Protein tau kodiert. Die hnRNP RMapt Interaktion bewirkt die axonale Translokation und Translation der Mapt-mRNA. Tau spielt eine zentrale Rolle beim Aufbau und der Stabilität neuronaler Mikrotubuli. Bei AD führt die Anhäufung von abnormal hyperphosphoryliertem tau-Protein jedoch zu neuronaler Degeneration. Der Verlust von hnRNP R verringert das axonale tau-Protein, jedoch nicht den Gesamtspiegel von tau. Wir beobachten, dass die Gehirne von 5xFAD-Mäusen, einem AD Mausmodell, durch Reduktion von hnRNP R geringere Mengen an Phospho-tau- und Amyloidβ-Plaques aufweisen. Ebenso zeigen Neuronen, die mit blockierenden ntisenseOligonukleotiden (ASO) behandelt wurden, um die Bindung von hnRNP R an Mapt-mRNA zu verhindern, verringerte axonale Mapt-mRNA Mengen und reduzierte Mengen an neu synthetisiertem tau-Protein. Unsere Daten legen daher nahe, dass die selektive Reduzierung des tau-Spiegels in Axonen, einem wichtigen subzellulären Ort der Neurofibrillenbildung, einen neuen therapeutischen Ansatz für die Behandlung der AD darstellen könnte.
33

Decoding the Language of Hypoglossal Motor Control

Laine, Christopher January 2011 (has links)
To effect movement, the central nervous system must appropriately coordinate the activities of pools of motoneurons (MNs), the cells which control muscle fibers. Sources of neural drive are often distributed to many MNs of a pool, and thus can synchronize the activities of targeted MNs. In this thesis, synchronization among MNs is used to investigate the strength, temporal progression, and anatomical distribution of neural drive to the hypoglossal motor nucleus (HMN), which controls muscles of the tongue. The HMN is an ideal target for such an investigation because it processes a host of functionally diverse inputs, such as those related to breathing, speaking, and swallowing. Study 1 characterizes motor unit (MU) synchronization within and across bellies of the human genioglossus (GG) muscle when MUs are activated by cortical drive (during voluntary tongue protrusion) or by automatic, brainstem-mediated drive (during rest breathing). We show that voluntary tongue protrusion synchronizes MU spike timing and firing rates within but not across bellies of the GG, whereas during rest breathing, MU firing rates are moderately synchronized both within and across muscle bellies. Study 2 documents respiratory-related synchronization of MU activities in muscles of the tongue and respiratory pump using an anesthetized rat model. The results of this study indicate that upper airway and respiratory pump MN pools share a low frequency respiratory-related drive, but that higher frequency (>8 Hz) synchronization is strongest in MU pairs of the chest-wall. Finally, Study 3 examines the potential for GG multi-unit and single MU activities to be entrained by cortical input. We show that during voluntary tongue protrusion, cortical oscillations in the 15-40 Hz range weakly synchronize MU population activity, and that EEG oscillations in this range intermittently influence the spike timing of individual GG MUs. These studies are the first to characterize MU synchronization by different sources of neural input to the HMN and establish a broad foundation for further investigation of hypoglossal motor control.
34

Modulation des axonalen Wachstums primärer Motoneurone durch cAMP in einem Mausmodell für die Spinale Muskelatrophie / Modulation of axonal growth of primary spinal motor neurons by cAMP in a mouse model for Spinal Muscular Atrophy

Lechner, Barbara Dorothea January 2009 (has links) (PDF)
Die Spinale Muskelatrophie (SMA) ist eine häufige autosomal-rezessiv vererbte Erkrankung des motorischen Nervensystems bei Kindern. Ursache der Degeneration von spinalen Motoneuronen ist der homozygote Verlust des SMN- (survival of motoneuron) Gens und ein dadurch bedingter Mangel an SMN-Protein. Untersuchungen an Motoneuronen von Smn-defizienten Mäusen ergaben Störungen des axonalen Längenwachstums aufgrund einer Fehlverteilung des Zytoskelettproteins beta-Aktin und seiner mRNA in den Axonterminalen. Das Axonwachstum wird durch Aktin-Polymerisierung im Wachstumskegel gesteuert. beta-Aktin-mRNA findet sich auch in Axonen, und die lokale Proteinsynthese kann durch neuronale Aktivierung gesteigert werden. Das SMN-Protein ist am axonalen Transport von beta-Aktin beteiligt. In der vorliegenden Arbeit ergaben Western Blot-Analysen in neuralen Stammzellen (NSC) sowie spinalen Motoneuronen in vitro eine Steigerung der SMN-Proteinexpression durch 8-CPT-cAMP. Zur Untersuchung der Auswirkungen der erhöhten SMN-Proteinmenge auf die Pathologie der Motoneurone wurde ein in-vitro-Assay entwickelt, mit dessen Hilfe gezeigt werden konnte, dass eine Behandlung mit 100 µM 8-CPT-cAMP die axonalen Veränderungen isolierter embryonaler Smn-defizienter Motoneurone kompensieren kann. Motoneurone von 14 Tage alten Smn-defizienten und Kontroll-Mausembryonen wurden über sieben Tage hinweg auf einer Matrix aus Poly-Ornithin und Laminin-111 bzw. Laminin-121/221 kultiviert und mit 100µM cAMP und neurotrophen Faktoren behandelt. Nach Fixierung wurden die Zellen mit Antikörpern gegen Islet-1/2, tau und beta-Aktin gefärbt, mit Hilfe eines konfokalen Mikroskops fotografiert und digital vermessen. 8-CPT-cAMP erhöht den beta-Aktin-Gehalt in den axonalen Wachstumskegeln von Smn-defizienten Motoneuronen. Die Größe der Wachstumskegel nimmt durch die Behandlung um das 2-3fache zu und erreicht normale Werte. Auf Laminin-111 bleibt das Längenwachstum der Axone durch 100µM 8-CPT-cAMP unbeeinflusst, auf Laminin-121/221 wird das Längenwachstum normalisiert. Die beta-Aktin-Verteilung innerhalb der Axone und Wachstumskegel von Smn-defizienten Motoneuronen erscheint durch die cAMP-Behandlung nahezu normalisiert. Die Wiederherstellung der beta-Aktin-Verteilung in Wachstumskegeln durch cAMP kann große Auswirkungen auf die Funktionalität der Motoneurone haben. Die Ergebnisse sind möglicherweise ein erster Schritt auf dem Weg zu einer Therapie für die Spinale Muskelatrophie. / Spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by loss of alpha-motoneurons in the spinal chord due to low levels of the survival motor neuron (SMN) protein. The genetic cause is the homozygous loss or mutation of the telomeric SMN1 gene and retention of the centromeric SMN2 gene, whose transcripts consist of about 90% truncated and unstable and only 10% functional protein. Motoneurons of Smn-deficient SMN2 transgenic mouse embryos cultured on laminin-1 show abnormalities compared to wildtype controls such as shorter axons, smaller growth cones and a ß-actin protein and mRNA deficit in the distal part of the axon. ß-actin plays a major role in growth cone motility and transmitter release at the presynapse. In addition, SMN works in a complex to transport ß-actin mRNA, which is known to be localized and locally translated in axons and growth cones, along the axon. Local ß-actin protein synthesis can be stimulated by increased neuronal activation. We determined the effects of cAMP on ß-actin localisation in axons as well as on axonal growth parameters in Smn-deficient primary motoneurons. Motoneurons of 14 days old Smn-/-, SMN2 transgenic and wildtype mouse embryos were cultured on laminin for 7 days with 100µM 8-CPT-cAMP and neurotrophic factors BDNF and CNTF. Fluorescence staining and digital measurements revealed a major effect of cAMP treatment on ß-actin distribution and growth cone size, which were restored to normal. Neurite lengths on laminin-111 remained unaffected but were normalized on substrate containing a synapse-specific ß2-laminin isoform. Western blots with neural stem cells (NSC) and heterozygous Smn+/-; SMN2 transgenic motoneurons treated with 100µM cAMP showed a marked upregulation of Smn protein expression. These data point to an important role for cAMP as a possible target of SMA drug therapy.
35

Role of CNTF-STAT3 signaling for microtubule dynamics inaxon growth and maintenance: Implications in motoneuron diseases / Die Funktion des CNTF-STAT3 Signalweges für die Microtubuli Dynamik in Axonalem Wachstum und Axon Erhalt: Implikationen für Motoneuronenerkrankungen

Thangaraj Selvaraj, Bhuvaneish January 2013 (has links) (PDF)
Neurotrophic factor signaling modulates differentiation, axon growth and maintenance, synaptic plasticity and regeneration of neurons after injury. Ciliary neurotrophic factor (CNTF), a Schwann cell derived neurotrophic factor, has an exclusive role in axon maintenance, sprouting and synaptic preservation. CNTF, but not GDNF, has been shown to alleviate motoneuron degeneration in pmn mutant mice carrying a missense mutation in Tbce gene, a model for Amyotrophic Lateral Sclerosis (ALS). This current study elucidates the distinct signaling mechanism by which CNTF rescues the axonal degeneration in pmn mutant mice. ... / Neurotrophe Faktoren beeinflussendie die neuronale Differenzierung, das Wachstum und die Stabilisierung von Axonen sowie Synaptische Plastizität und die Regeneration von Neuronen nach Verletzung. Der von Schwannzellen synthetisierte neurotrophe Faktor Ciliary neurotrophic factor (CNTF) spielt eine wichtige Rolle bei der axonalen Erhaltung sowie bei der Induktion und Reduktion von axonalen Verzweigungen. Die Behandlung der pmn Mausmutante mit CNTF, aber nicht mit GDNF führt zu einem späteren Krankheitsbeginn und verminderten Fortschreiten der Motoneuronendegeneration. Diese Mausmutante, die eine Punktmutation im Tbce Gen trägt, dient als Modell für die Amyotrophe Lateralsklerose. Ziel der vorliegenden Arbeit war es, die zugrunde liegenden Signalkaskaden aufzudecken, die den CNTF-vermittelten Effekt auf den Krnakheitsverlauf bei der pmn Maus verursachen. ...
36

Lokale axonale Wirkungen der CNTF-STAT3 Signalkaskade in Motoneuronen der pmn Maus - einem Mausmodel für die Amyotrophe Lateralsklerose / Local Axonal Function of CNTF-STAT3 Signaling in Motoneurons of the pmn-Mouse – a Mouse Model for Amyotrophic Lateral Sclerosis

Frank, Nicolas Clemens January 2015 (has links) (PDF)
1. Zusammenfassung Während der Embryogenese und nach Verletzungen von Nerven regulieren neurotrophe Faktoren Signalwege für Apoptose, Differenzierung, Wachstum und Regeneration von Neuronen. In vivo Experimente an neugeborenen Nagern haben gezeigt, dass der Verlust von Motoneuronen nach peripherer Nervenläsion durch die Behandlung mit GDNF, BDNF, und CNTF reduziert werden kann In der pmn-Mausmutante, einem Modell für die Amyotrophe Lateralsklerose, führt die Gabe von CNTF, nicht aber von GDNF zu einem verzögerten Krankheitsbeginn und einem verlangsamten Fortschreiten der Motoneuronendegeneration. Auslöser der Motoneuronendegeneration in der pmn-Maus ist eine Mutation im Tubulin spezifischen Chaperon E (Tbce) Gen, das für eines von fünf Tubulin spezifischen Chaperonen (TBCA-TBCE) kodiert und an der Bildung von -Tubulinheterodimeren beteiligt ist. Diese Arbeit sollte dazu beitragen, die CNTF-induzierten Signalwege zu entschlüsseln, die sich lindernd auf den progredienten Verlauf der Motoneuronendegeneration in der pmn-Maus auswirken. Primäre pmn mutierte Motoneurone zeigen ein reduziertes Axonwachstum und eine erhöhte Anzahl axonaler Schwellungen mit einer anomalen Häufung von Mitochondrien - ein frühes Erkennungsmerkmal bei ALS-Patienten. Die Applikation von CNTF nicht aber von BDNF oder GDNF, kann in vitro die beobachteten Wachstumsdefekte und das bidirektionale axonale Transportdefizit in pmn mutierten Motoneurone verhindern. Aus älteren Untersuchungen war bekannt, dass CNTF über den dreiteiligen transmembranen Rezeptorkomplex, bestehend aus CNTFR, LIFR und gp130, Januskinasen aktiviert, die STAT3 an Tyrosin 705 phosphorylieren (pSTAT3Y705). Ich konnte beobachten, dass axonales fluoreszenzmarkiertes pSTAT3Y705 nach CNTF-Gabe nicht retrograd in den Nukleus transportiert wird. Stattdessen führt die CNTF-induzierte Phosphorylierung von STAT3 an Tyrosin 705 zu einer transkriptionsunabhängigen lokalen Reaktion im Axon. Diese pSTAT3Y705 abhängige Reaktion ist notwendig und ausreichend, um das reduzierte Axonwachstum pmn mutierter Motoneurone zu beheben. Wie die Kombination einer CNTF Behandlung mit dem shRNA vermittelten knock-down von Stathmin in pmn mutierten Motoneuronen zeigt, zielt die CNTF-STAT3 Signalkaskade auf die Stabilisierung axonaler Mikrotubuli ab und wirkt sich positiv auf die anterograde und retrograde Mobilität von axonalen Mitochondrien aus. Interessanter Weise konnte ich außerdem feststellen, dass eine akute Gabe von CNTF das mitochondriale Membranpotential in Axonen primärer pmn mutierter und wildtypischer Motoneurone erhöht und einen Anstieg von ATP auslöst. Meine Beobachtungen legen nahe, dass CNTF unerwarteter Weise auch eine transiente Phosphorylierung an STAT3 Serin 727 (pSTAT3S727) auslöst, die zur anschließenden Translokation von pSTAT3S727 in Mitochondrien führt. Diese Ergebnisse zeigen, dass STAT3 mehrere lokale Ziele im Axon besitzt, nämlich axonale Mikrotubuli und Mitochondrien. / 2. Summary Both during development and after injury neurotrophic factors induce signaling pathways that regulate apoptosis, differentiation, growth and regeneration of neurons. In newborn rodents, treatment with GDNF, BDNF and CNTF can reduce the loss of motoneurons after peripheral nerve lesion. In the pmn mutant mouse, a model for amyotrophic lateral sclerosis, CNTF but not GDNF delays disease onset and slows down the course of motoneurons degeneration. Pmn mutant mice, suffer from a point mutation in tubulin specific chaperon E (Tbce) gene that codes for one of five tubulin specific chaperones (TBCA-TBCE) and is necessary for proper -tubulin heterodimer formation. The work presented here was designed to study the specific signaling pathways that are used by CNTF for attenuating progression of motoneuron degeneration in pmn mutant mice. Primary motoneurons from pmn mutant mice show reduced axon growth and irregular axonal swellings with abnormal accumulation of mitochondria – an early hallmark of pathology in ALS patients. In vitro, CNTF but not BDNF or GDNF was able to rescue defective axon growth and to prevent bidirectional transport interruption. It has already been shown that CNTF acts via the tripartite transmembrane receptor complex, composed of CNTFR, LIFR and gp130 to recruit Janus kinases that subsequently phosphorylate STAT3 on tyrosine 705 (pSTAT3Y705). After application of CNTF, I observed that axonal pSTAT3Y705 fused to a fluorescent tag is not retrogradely transported to the nucleus. In contrast, CNTF induced phosphorylation of STAT3 at tyrosine 705 leads to a transcriptional independent local reaction in motor axons which is necessary and sufficient to rescue axon growth in pmn mutant motoneurons. Combining CNTF treatment with shRNA mediated knock-down of Stathmin in pmn mutant motoneurons shows that CNTF-STAT3 signaling leads to microtubule stabilization in axons as well as improving anterograde and retrograde mobility of axonal mitochondria. Interestingly, I additionally found that an acute application of CNTF increases the membrane potential of axonal mitochondria that is accompanied with a rise of ATP levels in pmn mutant and wildtype motoneurons. Unexpectedly, I found STAT3 phosphorylated on serine 727 co-localizing with mitochondria after CNTF application. These results demonstrate that multiple local targets of STAT3 exist in axons that modulate structure and function of microtubules and mitochondria.
37

Differential roles of α-, β- and γ-actin isoforms in regulation of cytoskeletal dynamics and stability during axon elongation and collateral branch formation in motoneurons / Rolle der α-, β- und γ-Aktin Isoformen bei Regulation von Dynamik und Stabilität des Zytoskeletts während des Axonwachstums und beim Ausbilden von axonalen Verzweigungen in Motoneuronen

Moradi, Mehri January 2017 (has links) (PDF)
In highly polarized cells like neurons, cytoskeleton dynamics play a crucial role in establishing neuronal connections during development and are required for adult plasticity. Actin turnover is particularly important for neurite growth, axon path finding, branching and synaptogenesis. Motoneurons establish several thousand branches that innervate neuromuscular synapses (NMJs). Axonal branching and terminal arborization are fundamental events during the establishment of synapses in motor endplates. Branching process is triggered by the assembly of actin filaments along the axon shaft giving rise to filopodia formation. The unique contribution of the three actin isoforms, α-, β- and γ-actin, in filopodia stability and dynamics during this process is not well characterized. Here, we performed high resolution in situ hybridization and qRT-PCR and showed that in primary mouse motoneurons α-, β- and γ-actin isoforms are expressed and their transcripts are translocated into axons. Using FRAP experiments, we showed that transcripts for α-, β- and γ-actin become locally translated in axonal growth cones and translation hot spots of the axonal branch points. Using live cell imaging, we showed that shRNA depletion of α-actin reduces dynamics of axonal filopodia which correlates with reduced number of collateral branches and impairs axon elongation. Depletion of β-actin correlates with reduced dynamics of growth cone filopoida, disturbs axon elongation and impairs presynaptic differentiation. Also, depletion of γ-actin impairs axonal growth and decreases axonal filopodia dynamics. These findings implicate that actin isoforms accomplish unique functions during development of motor axons. Depletions of β- and γ-actin lead to compensatory upregulation of other two isoforms. Consistent with this, total actin levels remain unaltered and F-actin polymerization capacity is preserved. After the knockdown of either α- or γ-actin, the levels of β-actin increase in the G-actin pool indicating that polymerization and stability of β-actin filaments depend on α- or γ-actin. This study provides evidence both for unique and overlapping function of actin isoforms in motoneuron growth and differentiation. In the soma of developing motoneurons, actin isoforms act redundantly and thus could compensate for each other’s loss. In the axon, α-, β- and γ-actin accomplish specific functions, i.e. β-actin regulates axon elongation and plasticity and α- and γ-actin regulate axonal branching. Furthermore, we show that both axonal transport and local translation of α-, β- and γ-actin isoforms are impaired in Smn knockout motoneurons, indicating a role for Smn protein in RNA granule assembly and local translation of these actin isoforms in primary mouse motoneurons. / In stark polaren Zellen wie den Neuronen ist die Etablierung neuronaler Netzwerke ein entscheidender Faktor bei der Entwicklung des zentralen Nervensystems und spielt für die adulte Plastizität eine wesentliche Rolle. Besonders die Aktindynamik ist wichtig für das Neuritenwachstum, die axonale Wegfindung und Verzweigung, sowie die Synaptogenese. Motoneurone bilden mehrere tausend terminale Verzweigungen aus, um neuromuskuläre Endplatten (NMJ) zu innervieren. Die axonale Verzweigung ist ein fundamentales Ereignis bei Ausbildung synaptischer Verbindungen zwischen Motoneuron und innerviertem Muskel. Die Axonverzweigung geschieht durch die Polymerisierung von Aktin entlang des Axonschafts, was zur Entstehung von Filopodien und Lamellopodien führt. Allerdings ist die genaue Funktion der drei Aktin-Isoformen (α-, β- and γ-Actin), im Zusammenhang mit der Regulation der Filopodienstabilität und deren Dynamik, noch weitestgehend unbekannt. Somit konnten wir in dieser Arbeit mit Hilfe hoch sensitiver in situ Hybridisierungs- und qRT PCR Techniken zeigen, dass in primären Mausmotoneuronen alle drei Aktinisoformen (α-, β- und γ) exprimiert, und deren Transkripte entlang des axonalen Kompartiments transportiert werden. Unsere FRAP Daten weisen darauf hin, dass α-, β- und γ-Aktin sowohl im Wachstumskegel als auch an sogenannten „Translation Hot Spots“ innerhalb axonaler Verzweigungspunkte lokal synthetisiert werden. Anhand von „Live Cell Imaging“ Experimenten konnten wir dann zeigen, dass ein α-Aktin Knockdown die Dynamik axonaler Filopodien stark reduziert, und als Folge, die Anzahl von axonalen Verzweigungen und die Axonlänge verringert ist. Hingegen geht ein β-Aktin Knockdown mit reduzierter Filopodiendynamik im Wachstumskegel und betroffener Differenzierung präsynaptischer Strukturen einher. Veränderungen des axonalen Wachstum und der Filopodiendynamik sind ebenfalls bei einem γ-Aktin Knockdown zu beobachten. Diese Daten weisen darauf hin, dass die drei Aktinisoformen unterschiedliche Funktionen bei der Entwicklung von Motoraxonen haben. Darüber hinaus zeigen unsere Daten, dass die Herunterregulation einer Aktinisoform durch eine erhöhte Expression der beiden anderen Isoformen kompensiert wird. Dieser Kompensationsmechanismus erlaubt es, die gesamte Aktinmenge und somit die F-Aktin-Polymerisation in der Zelle aufrechtzuerhalten. Sehr interessant dabei ist die Beobachtung, dass nach einem α- oder γ-Actin Knockdown das G/F-Verhältnis verändert ist, so dass die Menge an β-Aktin im G-Aktin Pool steigt und im F-Aktin Pool abnimmt. Daher beruhen Polymerisation und Stabilität von β-Aktin auf den α-, und γ-Aktinisoformen. Zusammenfassend lässt sich sagen, dass alle drei Aktinisoformen übergreifende Funktionen während Wachstum und Differenzierung von Motoneuronen haben. Im Zellkörper von sich entwickelnden Motoneuronen übernehmen sie ähnliche Aufgaben und können sich somit gegenseitig kompensieren. Im Gegensatz dazu sind die Funktionen im axonalen Kompartiment wesentlich spezifischer. Hier reguliert β-Aktin axonales Wachstum und Plastizität, während α- und γ-Aktin eine entscheidende Rolle bei der Ausbildung axonaler Verzweigungen haben. Unsere Arbeit lässt nun Rückschlüsse über mögliche Funktionen des SMN Proteins beim Aufbau der sogenannten „RNA Granules“ und lokaler Proteinbiosynthese der verschiedenen Aktinisoformen in primären Mausmotoneuronen zu.
38

The role of RNA binding proteins in motoneuron diseases / Die Rolle von RNA-bindenden Proteinen in Motoneuronerkrankungen

Sivadasan, Rajeeve January 2016 (has links) (PDF)
Motoneuron diseases form a heterogeneous group of pathologies characterized by the progressive degeneration of motoneurons. More and more genetic factors associated with motoneuron diseases encode proteins that have a function in RNA metabolism, suggesting that disturbed RNA metabolism could be a common underlying problem in several, perhaps all, forms of motoneuron diseases. Recent results suggest that SMN interacts with hnRNP R and TDP-43 in neuronal processes, which are not part of the classical SMN complex. This point to an additional function of SMN, which could contribute to the high vulnerability of spinal motoneurons in spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). The current study elucidates functional links between SMN, the causative factor of SMA (spinal muscular atrophy), hnRNP R, and TDP-43, a genetic factor in ALS (amyotrophic lateral sclerosis). In order to characterize the functional interaction of SMN with hnRNP R and TDP-43, we produced recombinant proteins and investigated their interaction by co-immunoprecipitation. These proteins bind directly to each other, indicating that no other co-factors are needed for this interaction. SMN potentiates the ability of hnRNP R and TDP-43 to bind to ß-actin mRNA. Depletion of SMN alters the subcellular distribution of hnRNP R in motoneurons both in SMN-knockdown motoneurons and SMA mutant mouse (delta7 SMA). These data point to functions of SMN beyond snRNP assembly which could be crucial for recruitment and transport of RNA particles into axons and axon terminals, a mechanism which may contribute to SMA pathogenesis and ALS. ALS and FTLD (frontotemporal lobar degeneration) are linked by several lines of evidence with respect to clinical and pathological characteristics. Both sporadic and familial forms are a feature of the ALS-FTLD spectrum, with numerous genes having been associated with these pathological conditions. Both diseases are characterized by the pathological cellular aggregation of proteins. Interestingly, some of these proteins such as TDP-43 and FUS have also common relations not only with ALS-FTLD but also with SMA. Intronic hexanucleotide expansions in C9ORF72 are common in ALS and FTLD but it is unknown whether loss of function, toxicity by the expanded RNA or dipeptides from non ATG-initiated translation is responsible for the pathophysiology. This study tries to characterize the cellular function of C9ORF72 protein. To address this, lentiviral based knockdown and overexpression of C9ORF72 was used in isolated mouse motoneurons. The results clearly show that survival of these motoneurons was not affected by altered C9ORF72 levels, whereas adverse effects on axon growth and growth cone size became apparent after C9ORF72 suppression. Determining the protein interactome revealed several proteins in complexes with C9ORF72. Interestingly, C9ORF72 is present in a complex with cofilin and other actin binding proteins that modulate actin dynamics. These interactions were confirmed both by co-precipitation analyses and in particular by functional studies showing altered actin dynamics in motoneurons with reduced levels of C9ORF72. Importantly, the phosphorylation of cofilin is enhanced in C9ORF72 depleted motoneurons and patient derived lymphoblastoid cells with reduced C9ORF72 levels. These findings indicate that C9ORF72 regulates axonal actin dynamics and the loss of this function could contribute to disease pathomechanisms in ALS and FTLD. / Motoneuronerkrankungen bilden eine heterogene Gruppe von Pathologien, die durch die progressive Degeneration von Motoneuronen charakterisiert sind. Zunehmend werden genetische Faktoren in Assoziation mit Motoneuronerkrankungen identifiziert, die eine Funktion im RNA Metabolismus besitzen, was dafür spricht, dass ein gestörter RNA Metabolismus ein gemeinsames zugrunde liegendes Problem in mehreren, vielleicht allen, Formen von Motoneuronerkrankungen sein könnte. Neuere Ergebnisse legen nahe, dass SMN mit hnRNP R und TDP-43 in neuronalen Prozessen interagiert, die nicht Teil der klassischen Rolle des SMN Komplexes sind. Dies deutet auf eine zusätzliche Funktion von SMN hin, die zur hohen Störanfälligkeit von spinalen Motoneuronen in spinaler Muskelatrophie (SMA) und amyotropher Lateralsklerose (ALS) beitragen könnte. Die vorliegende Arbeit beleuchtet funktionelle Beziehungen zwischen SMN, dem auslösenden Faktor der SMA, und hnRNP R, sowie TDP-43, einem weiteren genetischen Faktor bei ALS. Um die funktionelle Interaktion von SMN mit hnRNP R und TDP-43 zu charakterisieren, wurden rekombinante Proteine hergestellt und ihre Interaktion durch co-Immunpräzipitation untersucht. Diese Proteine binden direkt an einander, was darauf hindeutet, dass für diese Interaktion keine weiteren co-Faktoren erforderlich sind. SMN potenziert die Fähigkeit von hnRNP R und TDP-43, β-Aktin mRNA zu binden. Depletion von SMN verändert die subzelluläre Verteilung von hnRNP R in Motoneuronen sowohl in SMN-knock-down Motoneuronen, als auch in der SMA Mausmutante (delta7 SMA). Diese Daten deuten auf Funktionen von SMN jenseits der snRNP Assemblierung hin, die entscheidend für die Rekrutierung und den Transport von RNA Partikel in Axonen und Axon Terminalen sein könnten, einem Mechanismus, der zur Pathogenese von SMA und ALS beitragen könnte. ALS und FTLD (fronto-temporale Lobus Degeneration) sind aufgrund mehrerer Nachweislinien bezüglich klinischer und pathologischer Charakteristika vernetzt. Sowohl sporadische als auch familiäre Formen sind Merkmal des ALS-FTLD Spektrums, wobei zahlreiche Gene mit diesen pathologischen Erscheinungen assoziiert wurden. Beide Krankheiten sind durch pathologische zelluläre Proteinaggregation charakterisiert. Interessanterweise haben einige dieser Proteine, wie TDP-43 und FUS, einen gemeinsamen Bezug nicht nur mit ALS-FTLD, sondern auch mit SMA. Intronische Hexanukleotid-Expansionen in C9ORF72 sind häufig in ALS und FTLD, es ist jedoch unbekannt, ob Funktionsverlust, Toxizität aufgrund der verlängerten RNA, oder Dipeptide von non-ATG initiierter Translation für die Pathophysiologie verantwortlich sind. Die vorliegende Arbeit versucht die zelluläre Funktion von C9ORF72 Protein zu charakterisieren. Hierfür wurde lentiviraler knock-down und Überexpression von C9ORF72 in isolierten Motoneuronen eingesetzt. Die Ergebnisse zeigen deutlich, dass das Überleben dieser Motoneurone durch veränderte C9ORF72 Konzentrationen nicht beeinflusst wurde, wohingegen negative Auswirkungen auf Axonwachstum und Wachstumskegelgröße nach C9ORF72 Suppression deutlich wurden. Die Bestimmung des Protein Interaktoms identifizierte mehrere Proteinkomplexe mit C9ORF72. Interessanterweise liegt C9ORF72 in einem Komplex mit Cofilin und anderen Aktin-bindenden Protein vor, welche die Aktin Dynamik modulieren. Diese Interaktionen wurden sowohl durch Analyse von co-Präzipitationen als auch besonders durch funktionelle Studien bestätigt, die eine veränderte Aktin Dynamik in Motoneuronen mit reduzierter C9ORF72 Konzentration zeigten. Wichtig ist die Beobachtung, dass die Phosphorylierung von Cofilin in C9ORF72 depletierten Motoneuronen und in Lymphoblastoid-Zellen mit reduzierter C9ORF72 Konzentration verstärkt ist. Diese Ergebnisse zeigen, dass C9ORF72 die axonale Aktin Dynamik reguliert und dass der Verlust dieser Funktion zu Krankheits-Pathomechanismen in ALS und FTLD beitragen könnte.
39

Developmental Nicotine Exposure And Its Effects On Morphology And Electrophysiology Of Hypoglossal Motoneurons In The Neonatal Rat

Powell, Gregory Leverette January 2014 (has links)
Developmental nicotine exposure (DNE) is known to cause deleterious effects in neonatal mammals through nicotine's actions on nicotinic acetylcholine receptors (nAChRs). In this work, we studied how DNE altered the structure and function of the hypoglossal motoneurons (XIIMNs) over the first few days post-parturition. Previous work in XIIMNs demonstrated an increase in cellular excitability (Pilarski et al., 2011), alterations in synaptic transmission among respiratory-related neurons (Wang et al., 2006; Pilarski et al., 2012; Jaiswal et al., 2013), and a reduction in inspiratory drive currents in DNE animals (Pilarski et al., 2011). Here we show that the effects of DNE extend to alterations in the spike-timing precision and reliability of XIIMNs, as well as spike-frequency adaptation. Additionally, simple morphological analysis of XIIMNs following nicotine exposure in utero has revealed a reduction in soma cross-sectional area. We were interested in studying the complete morphology of XIIMNs following DNE to discern its effects on more complex morphological parameters. We advanced this research using a combination of techniques in thin brainstem slices of neonatal rats, including whole cell patch clamp recordings and immunohistochemistry of intracellularly labeled hypoglossal motoneurons. Furthermore, morphological analysis revealed significant differences in the complexity of the dendritic arborization, showing that neurons from DNE animals had shorter dendrites that branched less often. We also used computational analysis to gain insight into mechanisms that may underlie the changes in spike-timing precision and reliability. In a single cell model of XIIMNs, decreases in potassium-dependent conductances such as the calcium-activated potassium current could potentially replicate the alterations seen in vitro. Finally, we also did a systems-level study of the hyoglossus muscle, a tongue retractor, to determine the relation between tongue retraction force and motor unit discharge characteristics. These experiments utilized adult, anesthetized rats to record single motor units, whole muscle electromyography (EMG) activity and tongue retraction force during spontaneous breathing. We determined that during inspiration-related tongue retractions in low and high force conditions, recruitment of motor units plays a crucial role in the control of tongue force output, whereas rate coding of single motor units is present, but appears to play a lesser role. Overall, this study shows that DNE effects the input-output properties of XIIMNs, potentially through changes in intrinsic channel properties; DNE also alters XIIMN morphology, particularly dendritic arborization; and that organization of a tongue retractor muscle depends primarily on recruitment, but also rate coding, to increase force output.
40

Neural Mechanisms Underlying Muscle Synergies Involved in the Control of the Human Hand

McIsaac, Tara January 2006 (has links)
The dexterity of the human hand depends largely on the ability to move the fingers independently, the execution of which requires the coordination of multiple muscles. How these muscle ensembles are recruited by the central nervous system is not clear. Therefore, the objective of this dissertation was to identify some of the neural mechanisms whereby certain hand muscles are recruited into functional groups, or muscle synergies, needed for the generation of specific hand and finger movements.We characterized the organization of synaptic inputs onto the motor neurons supplying different compartments of a multi-tendoned finger flexor, the flexor digitorum superficialis (FDS). We found that the motor neurons controlling different finger compartments of the FDS do not receive entirely segregated inputs, and that the motor neurons supplying adjacent compartments receive substantially more common synaptic input than motor neurons supplying compartments further apart. The FDS and another multi-tendoned finger flexor, the flexor digitorum profundus (FDP), both insert onto each finger and function together to flex the fingers. Surprisingly, we found that the motor neurons controlling the compartments of FDS and FDP to the same finger receive completely independent inputs, despite similar mechanical functions of the two muscles. Thus, there is more neural coupling between motor neurons supplying compartments of the same muscle that move different fingers than there is between motor neurons supplying the compartments of two different muscles that move the same finger.Although the motor neurons supplying the flexors of the tips of the thumb [flexor pollicis longus (FPL)] and index finger [index compartment of the flexor digitorum profundus (FDP2)] receive substantial shared synaptic input during a precision grip task, the removal of the normal tactile feedback from the digit pads did not change the amount of common input to the two motor neuron pools, indicating these last-order divergent neurons do not require tactile afferent inputs for activation. Finally, in contrast to the substantial shared input to motor neurons supplying these two extrinsic muscles (FPL and FDP2), the motor neurons supplying two intrinsic muscles of the thumb [adductor pollicis (AdP)] and index finger [first dorsal interosseous (FDI)] were shown to receive few shared inputs during precision grip.

Page generated in 0.0469 seconds