1 |
QUANTIFYING SPATIAL AND TEMPORAL VARIABILITY OF MOUNTAIN SYSTEM RECHARGE AND RIPARIAN EVAPOTRANSPIRATION IN SEMIARID CATCHMENTSAjami, Hoori January 2009 (has links)
Groundwater response to climate variability and land cover change is important for sustainable management of water resources in the Southwest US. Global Climate Models (GCM) project that the region will dry in the 21st century and the transition to a more arid climate may be under way. In semiarid Basin and Range systems, this impact is likely to be most pronounced in Mountain System Recharge (MSR), a process which constitutes a significant component of recharge in these basins. Despite the importance of MSR the physical processes that control MSR, and hence the climate change impacts, have not been fully investigated because of the complexity of recharge processes in mountainous catchments and limited observations. In this study, methodologies were developed to provide process-based understanding of MSR based on empirical and data-driven approaches. For the empirical approach, a hydrologically-based seasonal ratio the Normalized Seasonal Wetness Index (NSWI) was developed. It incorporates seasonal precipitation variability and temperature regimes to seasonal MSR estimation using existing empirical equations. Stable isotopic data was used to verify recharge partitioning. Using the NSWI and statistically downscaled monthly GCM precipitation and temperature data, climate change impacts on seasonal MSR are evaluated. Second, a novel data-based approach was developed to quantify mountain block recharge based on the catchment storage-discharge (S-Q) relationships and informed by isotopic data. Development of S-Q relationships across the Sabino Creek catchment, Arizona, allowed understanding of MBR dynamics across scale.Two ArcGIS desktop applications were developed for ArcGIS 9.2 to enhance recharge and evapotranspiration (ET) estimation: Arc-Recharge and RIPGIS-NET. Arc-Recharge was developed to quantify and distribute recharge along MODFLOW cells using spatially explicit precipitation data and a digital elevation model. RIPGIS-NET was developed to provide parameters for the RIP-ET package and to visualize MODFLOW results. RIP-ET is an improved MODFLOW ET module for simulating ET. RIPGIS-NET improves alluvial recharge estimation by providing spatially explicit riparian ET estimates. Using such tools and the above methods improves recharge and ET estimation in groundwater models by incorporating temporally and spatially explicit data and hence the assessment of climate variability and land cover change on groundwater resources can be improved.
|
2 |
LIFE IN THE RAIN SHADOW: UNDERSTANDING SOURCES OF RECHARGE, GROUNDWATER FLOW, AND THEIR EFFECTS ON GROUNDWATER DEPENDENT ECOSYSTEMS IN THE PANAMINT RANGE, DEATH VALLEY, CALIFORNIA, USACarolyn L. Gleason (5930639) 16 January 2019 (has links)
<div>
<p>Despite
its location in the rain shadow of the southern Sierra Nevada, the Panamint
Range within Death Valley National Park, CA hosts a complex aquifer system that
supports numerous springs. These springs, in turn, support unique
groundwater-dependent ecological communities. Spring emergences range in
elevation from 2434 m above sea level (within the mountain block) to 77 m below
sea level (in the adjacent basins). Waters were collected from representative
Panamint Range springs and analyzed for environmental isotopes and geochemical
tracers to address the following questions: 1) What is the primary source of
recharge for the springs? How much
recharge occurs on the Panamint Range? 2) What groundwater flowpaths and
geologic units support springflow generation? and 3) What are the residence
times of the springs? The stable isotopic composition (δ<sup>18</sup>O and δ<sup>2</sup>H) of spring
water and precipitation indicate that localized high-elevation snowmelt is the
dominant source of recharge to these perennial springs, though recharge from
rainfall is not wholly insignificant. Geochemical evolution was evaluated using
principle component analysis to compare the concentrations of all major spring
cations and anions in a multidimensional space and group them according to
dominant geochemical signatures. These resulting geochemical groups are controlled
primarily by topography. The Noonday Dolomite and other carbonate units in the
range are identified as the water-bearing units in the mountain block based on
the <sup>87</sup>Sr/<sup>86</sup>Sr of spring
waters and rock samples. These units also offer higher hydraulic conductivities
than other formations and are chemically similar. Radiocarbon- and <sup>3</sup>H derived residence
times of these spring waters range from modern to approximately 1840 years,
with the shortest residence times at higher altitudes and Hanaupah Canyon and
increasing residence times with decreasing altitude. This residence time-altitude
relationship is likewise likely topography-driven though there are significant
disparities in mountain block storage between the various canyons of the range
resulting in variable residence times between drainages. Lower Warm Springs A
and B, however, are the exceptions to this trend as they emerge at lower
altitudes (750m above sea level) and are likely driven by the transport of
groundwater to the surface along faults which increases both the temperature
and groundwater residence times of waters from these springs. Benthic
macroinvertebrates and benthic and planktonic microbes were also sampled for
each spring studied. BMI and microbial community structure in the Panamint Range
is likewise topography-controlled with more tolerant communities at lower
elevations (within more chemically evolved waters) and less tolerant species in
the unevolved waters at higher elevations.</p></div>
|
Page generated in 0.0664 seconds