• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 2
  • 2
  • 1
  • Tagged with
  • 52
  • 52
  • 52
  • 17
  • 12
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

An agent-based forest sector modeling approach to analyzing the economic effects of natural disturbances

Schwab, Olaf Sebastian 05 1900 (has links)
This dissertation describes the development of CAMBIUM, an agent-based forest sector model for large-scale strategic analysis. This model is designed as a decision support tool for assessing the effect that changes in forest product demand and resource inventories can have on the structure and economic viability of the forest sector. CAMBIUM complements existing forest sector models by modeling aggregate product supply as an emergent property of individual companies’ production decisions and stand-level ecological processes. Modeling the forest products sector as a group of interacting autonomous agents makes it possible to introduce production capacity dynamics and the potential for mill insolvencies as factors in modeling the effects of market and forest inventory based disturbances. This thesis contains four main manuscripts. In the first manuscript I develop and test a dispersal algorithm that projects aggregated forest inventory information onto a lattice grid. This method can be used to generate ecologically and statistically consistent datasets where high-quality spatial inventory data is otherwise unavailable. The second manuscript utilizes this dataset in developing a provincial-level resource dynamics model for assessing the timber supply effects of introducing weevil-resistant spruce. This model employs a stand-level approach to simulating weevil infestation and associated merchantable volume losses. Provincial-level impacts are determined by simulating harvest activities over a 350 year time horizon. In the third manuscript I shift the focus to interactions between forest companies. I analyze the effects of strategic decisions on sector structure by developing CAMBIUM as an agent-based model of competition and industry structure evolution. The forest sector is modeled as a group of autonomous, interacting agents that evolve and compete within the limitations posed by resource inventories and product demand. In the final manuscript I calibrate CAMBIUM to current conditions in the British Columbia forest sector. Industry agents compete for roundwood inputs, as well as for profits in finished product markets for pulp, panel products, and lumber. To test the relevance and utility of this model, CAMBIUM is used to quantify the cumulative impacts of a market downturn for forest products and mountain pine beetle induced timber supply fluctuations on the structure of the forest sector.
42

Application of continuous wavelet analysis to hyperspectral data for the characterization of vegetation

Cheng, Tao Unknown Date
No description available.
43

Quantifying change in the spatial pattern of forests: assessing impacts of mountain pine beetle infestation and harvest

Long, Jed 30 April 2009 (has links)
British Columbia’s current mountain pine beetle epidemic has led to salvage and mitigation harvesting strategies intended to slow the dispersal of beetles, and recover economic value from infested timber stands. These resulting harvesting strategies will alter the spatial pattern of forest landscapes in impacted regions, often resulting in forest fragmentation. As a result, wildlife habitat, hydrologic regimes, local carbon budgets, and soil dynamics, amoung other ecological properties, are expected to be negatively impacted. Monitoring of forest fragmentation in Canada is now required for the Montreal Process, an international forest monitoring policy. Effective methods that quantify changes in forest fragmentation, the breaking up of forest land cover into smaller, and more numerous parts, are required to meet forest monitoring objectives. This research provides two new methods that build upon existing approaches widely used for quantifying the spatial patterns of landscape features (i.e., landscape pattern indices). The first approach I demonstrate aids the quantification of forest pattern change over two time periods, by accounting for the impact of composition on spatial configuration. The value of this method is demonstrated using a case study that highlights the impacts of forest harvesting, associated with insect salvage and mitigation activities. This method allows landscapes that have changed primarily in composition to be distinguished from those that have experienced large configurational change. In the second approach I use multivariate cluster analysis for regionalization (the grouping of objects in space), and identify regions within a study area where increased fragmentation is observed. Regions delineated based on forest spatial pattern can be linked to underlying processes. Ancillary information (e.g., elevation) can be used to identify areas where observed forest pattern is due to underlying physiological features. Pattern indices (e.g., patch perimeter-area ratio) can be used to distinguish between patterns arising from forest disturbance that is likely natural (e.g., fire) or anthropogenic (e.g., harvest activity) in origin. The methods presented in this thesis may be most appropriate when observed changes in landscape pattern can be attributed to substantial changes in landscape composition.
44

An agent-based forest sector modeling approach to analyzing the economic effects of natural disturbances

Schwab, Olaf Sebastian 05 1900 (has links)
This dissertation describes the development of CAMBIUM, an agent-based forest sector model for large-scale strategic analysis. This model is designed as a decision support tool for assessing the effect that changes in forest product demand and resource inventories can have on the structure and economic viability of the forest sector. CAMBIUM complements existing forest sector models by modeling aggregate product supply as an emergent property of individual companies’ production decisions and stand-level ecological processes. Modeling the forest products sector as a group of interacting autonomous agents makes it possible to introduce production capacity dynamics and the potential for mill insolvencies as factors in modeling the effects of market and forest inventory based disturbances. This thesis contains four main manuscripts. In the first manuscript I develop and test a dispersal algorithm that projects aggregated forest inventory information onto a lattice grid. This method can be used to generate ecologically and statistically consistent datasets where high-quality spatial inventory data is otherwise unavailable. The second manuscript utilizes this dataset in developing a provincial-level resource dynamics model for assessing the timber supply effects of introducing weevil-resistant spruce. This model employs a stand-level approach to simulating weevil infestation and associated merchantable volume losses. Provincial-level impacts are determined by simulating harvest activities over a 350 year time horizon. In the third manuscript I shift the focus to interactions between forest companies. I analyze the effects of strategic decisions on sector structure by developing CAMBIUM as an agent-based model of competition and industry structure evolution. The forest sector is modeled as a group of autonomous, interacting agents that evolve and compete within the limitations posed by resource inventories and product demand. In the final manuscript I calibrate CAMBIUM to current conditions in the British Columbia forest sector. Industry agents compete for roundwood inputs, as well as for profits in finished product markets for pulp, panel products, and lumber. To test the relevance and utility of this model, CAMBIUM is used to quantify the cumulative impacts of a market downturn for forest products and mountain pine beetle induced timber supply fluctuations on the structure of the forest sector. / Forestry, Faculty of / Graduate
45

Timber supply and economic impact of mountain pine beetle salvage strategies

Moreira-Munoz, Simon 05 1900 (has links)
To address the scale mountain pine beetle (MPB) outbreak in British Columbia, salvage has become fully integrated with timber supply strategies. The objective of this thesis is to assess the economic impact of different salvage strategies depending on different attack levels, decay rates, and stakeholder discount rates. The study area is located in N.E. British Columbia where the MPB has not yet reached its peak and where susceptible to attack stands account for 40% of the area. Salvage strategies were modelled with a timber supply model (Woodstock) which uses a linear programming type II optimization approach. Performance of the model was assessed over a range of indicators such as NPV, profit, salvage proportion, species composition, inventory levels, and non-recoverable volume. Sensitivity analyses were conducted on harvest flow, discount rate, and ending inventory. The model was very sensitive to the intensity of attack and less sensitive to the decay level. The high level of attack resulted in large volume losses, mostly as un-salvaged inventory. Although allowable annual cut (AAC) uplifts have an economic benefit, they do not necessarily maximize the salvage of pine. Non-pine species are an important component of the salvage and these species are also essential for the future timber supply. If the objective is to ensure quality and quantity of the future forest, policies have to complement AAC uplifts by strongly encouraging the salvage of mainly pine-leading stands and management options that minimize the “by-catch” of non-pine species and minimize destruction of advanced regeneration during salvage. However, this has an opportunity cost for the private industry where the objective is to maximize profit. If the salvage strategy focuses on decreasing the impact on cash flows, achieving desirable ending inventory levels, avoiding salvage of stands after shelf-life, and reducing impact on non-attack species, then the current harvest level will likely lead to a mid-term timber supply fall-down. Using the fibre for bioenergy production is an alternative if managing for bioenergy can be integrated into harvest operations. However, unlike mill residues, the bioenergy supply has to fully account for harvest and transportation costs of dead wood to the mill.
46

Spatial-temporal analysis of moving polygons

Robertson, Colin John 06 April 2010 (has links)
There are few methods available for the spatial-temporal analysis of polygon data. This research develops a new method for spatial-temporal analysis of moving polygons (STAMP). Using an event-based framework, polygons from neighboring time periods are related by spatial overlap and proximity. The proximity spatial relation is defined by an application specific distance threshold. STAMP is demonstrated in the spatial-temporal analysis of a wildfire burning over small spatial and temporal scales, and in the spatial-temporal analysis of mountain pine beetle (Dendroctonus ponderosae Coleoptera: Hopkins) movement patterns over large spatial and temporal scales. The mountain pine beetle analysis found that short range movement patterns of mountain pine beetles occurred at different beetle population levels. Spot proliferation occurred most when beetle presence was increasing slowly, perhaps moving into new areas for the first time. When beetle presence increased rapidly, local expansion, or spot growth, was a more common movement pattern. In the Pine Pass study area. long range dispersal markedly extended the northeast border of the mountain pine beetle range.
47

Timber supply and economic impact of mountain pine beetle salvage strategies

Moreira-Munoz, Simon 05 1900 (has links)
To address the scale mountain pine beetle (MPB) outbreak in British Columbia, salvage has become fully integrated with timber supply strategies. The objective of this thesis is to assess the economic impact of different salvage strategies depending on different attack levels, decay rates, and stakeholder discount rates. The study area is located in N.E. British Columbia where the MPB has not yet reached its peak and where susceptible to attack stands account for 40% of the area. Salvage strategies were modelled with a timber supply model (Woodstock) which uses a linear programming type II optimization approach. Performance of the model was assessed over a range of indicators such as NPV, profit, salvage proportion, species composition, inventory levels, and non-recoverable volume. Sensitivity analyses were conducted on harvest flow, discount rate, and ending inventory. The model was very sensitive to the intensity of attack and less sensitive to the decay level. The high level of attack resulted in large volume losses, mostly as un-salvaged inventory. Although allowable annual cut (AAC) uplifts have an economic benefit, they do not necessarily maximize the salvage of pine. Non-pine species are an important component of the salvage and these species are also essential for the future timber supply. If the objective is to ensure quality and quantity of the future forest, policies have to complement AAC uplifts by strongly encouraging the salvage of mainly pine-leading stands and management options that minimize the “by-catch” of non-pine species and minimize destruction of advanced regeneration during salvage. However, this has an opportunity cost for the private industry where the objective is to maximize profit. If the salvage strategy focuses on decreasing the impact on cash flows, achieving desirable ending inventory levels, avoiding salvage of stands after shelf-life, and reducing impact on non-attack species, then the current harvest level will likely lead to a mid-term timber supply fall-down. Using the fibre for bioenergy production is an alternative if managing for bioenergy can be integrated into harvest operations. However, unlike mill residues, the bioenergy supply has to fully account for harvest and transportation costs of dead wood to the mill.
48

The light at the end of the tunnel: photosensitivity in developing mountain pine beetle (Dendroctonus ponderosae)

Wertman, Debra 11 December 2017 (has links)
This research explores the capacity for functional photoreception in larvae of the mountain pine beetle (Dendroctonus ponderosae), an extremely important forest pest insect that is well adapted for development beneath the bark of pine trees. Phototaxis tests, gene expression analysis and development experiments were integrated to assess mountain pine beetle larvae for light sensitivity. When presented with a phototaxis choice test, larvae preferred dark over light microhabitats, revealing that larvae sense and respond behaviourally to light. Long wavelength opsin transcription was identified in all life stages, including eggs and larvae, suggesting that D. ponderosae possesses extraretinal photosensitive capabilities across its life cycle. The long wavelength opsin could function in phototaxis or the development phenology of immature beetles, while the ultraviolet opsin, only found to be expressed in pupae and adults, is likely to function in dispersal via the compound eyes. Results from two development experiments reveal an effect of photoperiod treatment on beetle development rate when reared from the egg stage, but not when reared from mature larvae, indicating that a critical photosensitive life stage(s) must occur in D. ponderosae prior to the third larval instar. An effect of photoperiod on adult emergence rates, however, appears to be independent of larval rearing conditions. The discovery of opsin expression and negative phototaxis in eyeless mountain pine beetle larvae, in addition to an effect of photoperiod on immature development and adult emergence rates, suggest that light and photoperiodism likely function in survival and life cycle coordination in this species. / Graduate / 2018-10-17
49

Timber supply and economic impact of mountain pine beetle salvage strategies

Moreira-Munoz, Simon 05 1900 (has links)
To address the scale mountain pine beetle (MPB) outbreak in British Columbia, salvage has become fully integrated with timber supply strategies. The objective of this thesis is to assess the economic impact of different salvage strategies depending on different attack levels, decay rates, and stakeholder discount rates. The study area is located in N.E. British Columbia where the MPB has not yet reached its peak and where susceptible to attack stands account for 40% of the area. Salvage strategies were modelled with a timber supply model (Woodstock) which uses a linear programming type II optimization approach. Performance of the model was assessed over a range of indicators such as NPV, profit, salvage proportion, species composition, inventory levels, and non-recoverable volume. Sensitivity analyses were conducted on harvest flow, discount rate, and ending inventory. The model was very sensitive to the intensity of attack and less sensitive to the decay level. The high level of attack resulted in large volume losses, mostly as un-salvaged inventory. Although allowable annual cut (AAC) uplifts have an economic benefit, they do not necessarily maximize the salvage of pine. Non-pine species are an important component of the salvage and these species are also essential for the future timber supply. If the objective is to ensure quality and quantity of the future forest, policies have to complement AAC uplifts by strongly encouraging the salvage of mainly pine-leading stands and management options that minimize the “by-catch” of non-pine species and minimize destruction of advanced regeneration during salvage. However, this has an opportunity cost for the private industry where the objective is to maximize profit. If the salvage strategy focuses on decreasing the impact on cash flows, achieving desirable ending inventory levels, avoiding salvage of stands after shelf-life, and reducing impact on non-attack species, then the current harvest level will likely lead to a mid-term timber supply fall-down. Using the fibre for bioenergy production is an alternative if managing for bioenergy can be integrated into harvest operations. However, unlike mill residues, the bioenergy supply has to fully account for harvest and transportation costs of dead wood to the mill. / Forestry, Faculty of / Graduate
50

Extracting fire behaviour data from georeferenced oblique aerial wildfire photographs

Hart, Henry 25 April 2022 (has links)
Wildfires are a natural process critical to the health of forests around the world. However, recent decades have witnessed unprecedented wildfire seasons in many forested regions, leading to a range of unprecedented socio-economic, environmental, and human health impacts. Mitigating these impacts relies in part on fire behaviour prediction systems, which provide information to assist operational wildfire managers with addressing wildfire risk and prioritizing wildfire fighting efforts. A key aspect of fire behaviour prediction systems are rate of spread models that rely on observational and experimental fire behaviour data from naturally occurring wildfires and prescribed burns, respectively. Given the challenge with observing and measuring wildfires in situ, rate of spread models typically rely on a small set of data inputs that are not always representative of the range of wildfires occurring in certain forest types. Furthermore, existing fire behaviour models often lack empirical data on forests that have more recently experienced significant compositional shifts due to climate change or various ecological or anthropogenic disturbances. To address these shortcomings, the objective of this thesis is to establish a method of acquiring empirical fire behaviour data to enhance fire behaviour prediction science through two distinct studies. The first evaluates the utility of monophotogrammetry to extract fire behaviour data from oblique aerial wildfire photographs. The results demonstrate how this approach can provide new and accurate fire spread observations to inform fire behaviour prediction or other aspects of wildland fire science where databases of such wildfire photos exist. The second study is an empirical wildfire spread analysis in forest stands affected by mountain pine beetle (MPB), and utilizes the method of monoplotting to acquire spread rate data from wildfire photographs of grey-attack MPB-affected forest stands. Results from this study further demonstrate the efficacy of the previously established monoplotting technique while providing novel empirical evidence of fire behaviour in grey attack MPB-affected forest stands. Overall, the research results presented in this thesis demonstrate the potential of monophotogrammetry for the acquisition of fire behaviour data and evaluating the results derived from fire behaviour prediction systems in different ecological contexts. This thesis exhibits the potential for this method to expand into other areas of fire behaviour, such as flame or smoke plume dimensions, spotting, and the relationship between fire behaviour and disturbance events such as pest insect outbreaks. / Graduate / 2023-04-14

Page generated in 0.0766 seconds