• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A 258-year record of precipitation as snow from tree-rings, Southern Coast Mountains, British Columbia

MacKinnon, Stuart James 03 January 2017 (has links)
In Pacific North America, a substantial amount of the streamflow available during the dry summer months originates from melting mountain snowpacks. Since the start of the twenty-first century, these mountain snowpacks have been declining due to the impacts of global climate change and could have severe implications for future water availability in many regions. To develop robust predictive models of future water availability derived from mountainous snowpacks, the longest possible data record is required. However, instrumental data for snow measurements, when available, are limited to a length of only five or six decades in most regions of Pacific North America. In this study, tree-rings from snow-depth sensitive tree species (mountain hemlock (Tsuga mertensiana (Bong.) Carrière) and subalpine fir (Abies lasiocarpa (Hook.) Nutt.)) were used as a proxy to develop a 258-year record of precipitation as snow (PAS) for the southern Coast Mountains of British Columbia. Four snow models were evaluated based on a suite of dendroclimatological model diagnostics. From these, one PAS reconstruction was carried out. The reconstruction was unable to properly validate using the leave-one-out cross validation method. This result is attributed to the combination of a short calibration period, a potentially weak climate signal, and the absence of signal enhancement. Despite this outcome the research resulted in number of inferences and recommendations useful for future research. / Graduate
2

Acoustic sounding of snow water equivalent

Kinar, Nicholas John Stanislaus 13 June 2007
An acoustic frequency-swept wave was investigated as a means for determining Snow Water Equivalent (SWE) in cold wind-swept prairie and sub-alpine environments. Building on previous research conducted by investigators who have examined the propagation of sound in snow, digital signal processing was used to determine acoustic pressure wave reflection coefficients at the interfaces between 'layers' indicative of changes in acoustic impedance. Using an iterative approach involving boundary conditions at the interfaces, the depth-integrated SWE was determined using the Berryman equation from porous media physics. Apparatuses used to send and receive sound waves were designed and deployed during the winter season at field sites situated near the city of Saskatoon, Saskatchewan, and in Yoho National Park, British Columbia. Data collected by gravimetric sampling was used as comparison for the SWE values determined by acoustic sounding. The results are encouraging and suggest that this procedure is similar in accuracy to SWE data collected using gravimetric sampling. Further research is required to determine the applicability of this technique for snow situated at other geographic locations.
3

Acoustic sounding of snow water equivalent

Kinar, Nicholas John Stanislaus 13 June 2007 (has links)
An acoustic frequency-swept wave was investigated as a means for determining Snow Water Equivalent (SWE) in cold wind-swept prairie and sub-alpine environments. Building on previous research conducted by investigators who have examined the propagation of sound in snow, digital signal processing was used to determine acoustic pressure wave reflection coefficients at the interfaces between 'layers' indicative of changes in acoustic impedance. Using an iterative approach involving boundary conditions at the interfaces, the depth-integrated SWE was determined using the Berryman equation from porous media physics. Apparatuses used to send and receive sound waves were designed and deployed during the winter season at field sites situated near the city of Saskatoon, Saskatchewan, and in Yoho National Park, British Columbia. Data collected by gravimetric sampling was used as comparison for the SWE values determined by acoustic sounding. The results are encouraging and suggest that this procedure is similar in accuracy to SWE data collected using gravimetric sampling. Further research is required to determine the applicability of this technique for snow situated at other geographic locations.
4

Climate change impacts on mountain snowpack presented in a knowledge to action framework

Sproles, Eric Allan 16 February 2012 (has links)
Throughout many of the world’s mountain ranges snowpack accumulates during the winter and into the spring, providing a natural reservoir for water. As this reservoir melts, it fills streams and recharges groundwater for over 1 billion people globally. Despite its importance to water resources, our understanding of the storage capacity of mountain snowpack is incomplete. This partial knowledge limits our abilities to assess the impact that projected climate conditions will have on mountain snowpack and water resources. While understanding the effect of projected climate on mountain snowpack is a global question, it can be best understood at the basin scale. It is at this level that decision makers and water resource managers base their decisions and require a clarified understanding of basin's mountain snowpack. The McKenzie River Basin located in the central-western Cascades of Oregon exhibits characteristics typical of many mountain river systems globally and in the Pacific Northwestern United States. Here snowmelt provides critical water supply for hydropower, agriculture, ecosystems, recreation, and municipalities. While there is a surplus of water in winter, the summer months see flows reach a minimum and the same groups have to compete for a limited supply. Throughout the Pacific Northwestern United States, current analyses and those of projected future climate change impacts show rising temperatures, diminished snowpacks, and declining summertime streamflow. The impacts of climate change on water resources presents new challenges and requires fresh approaches to understanding problems that are only beginning to be recognized. Climate change also presents challenges to decision makers who need new kinds of climate and water information, and will need the scientific research community to help provide improved means of knowledge transfer. This dissertation quantified the basin-wide distribution of snowpack across multiple decades in present and in projected climate conditions, describing a 56% decrease in mountain snowpack with regional projected temperature increases. These results were used to develop a probabilistic understanding of snowpack in projected climates. This section described a significant shift in statistical relations of snowpack. One that would be statistically likely to accumulate every 3 out of 4 years would accumulate in 1 out of 20 years. Finally this research identifies methods to improved knowledge transfer from the research community to water resource professionals. Implementation of these recommendations would enable a more effective means of dissemination to stakeholders and policy makers. While this research focused only on the McKenzie River Basin, it has regional applications. Processes affecting snowpack in the McKenzie River Basin are similar to those in many other maritime, forested Pacific Northwest watersheds. The framework of this research could also be applied to regions outside of the Pacific Northwestern United States to gain a similar level of understanding of climate impacts on mountain snowpack. / Graduation date: 2012

Page generated in 0.0522 seconds