Spelling suggestions: "subject:"moved recommendations"" "subject:"moves recommendations""
1 |
A Comparative Study of Recommendation SystemsLokesh, Ashwini 01 October 2019 (has links)
Recommendation Systems or Recommender Systems have become widely popular due to surge of information at present time and consumer centric environment. Researchers have looked into a wide range of recommendation systems leveraging a wide range of algorithms. This study investigates three popular recommendation systems in existence, Collaborative Filtering, Content-Based Filtering, and Hybrid recommendation system. The famous MovieLens dataset was utilized for the purpose of this study. The evaluation looked into both quantitative and qualitative aspects of the recommendation systems. We found that from both the perspectives, the hybrid recommendation system performs comparatively better than standalone Collaborative Filtering or Content-Based Filtering recommendation system
|
2 |
Enabling Content Discovery in an IPTV System : Using Data from Online Social NetworksDeirmenci, Hazim January 2017 (has links)
Internet Protocol television (IPTV) is a way of delivering television over the Internet, which enables two-way communication between an operator and its users. By using IPTV, users have freedom to choose what content they want to consume and when they want to consume it. For example, users are able to watch TV shows after they have been aired on TV, and they can access content that is not part of any linear TV broadcasts, e.g. movies that are available to rent. This means that, by using IPTV, users can get access to more video content than is possible with the traditional TV distribution formats. However, having more options also means that deciding what to watch becomes more difficult, and it is important that IPTV providers facilitate the process of finding interesting content so that the users find value in using their services. In this thesis, the author investigated how a user’s online social network can be used as a basis for facilitating the discovery of interesting movies in an IPTV environment. The study consisted of two parts, a theoretical and a practical. In the theoretical part, a literature study was carried out in order to obtain knowledge about different recommender system strategies. In addition to the literature study, a number of online social network platforms were identified and empirically studied in order to gain knowledge about what data is possible to gather from them, and how the data can be gathered. In the practical part, a prototype content discovery system, which made use of the gathered data, was designed and built. This was done in order to uncover difficulties that exist with implementing such a system. The study shows that, while it is is possible to gather data from different online social networks, not all of them offer data in a form that is easy to make use of in a content discovery system. Out of the investigated online social networks, Facebook was found to offer data that is the easiest to gather and make use of. The biggest obstacle, from a technical point of view, was found to be the matching of movie titles gathered from the online social network with the movie titles in the database of the IPTV service provider; one reason for this is that movies can have titles in different languages. / Internet Protocol television (IPTV) är ett sätt att leverera tv via Internet, vilket möjliggör tvåvägskommunikation mellan en operatör och dess användare. Genom att använda IPTV har användare friheten att välja vilket innehåll de vill konsumera och när de vill konsumera det. Användare har t.ex. möjlighet att titta på tv program efter att de har sänts på tv, och de kan komma åt innehåll som inte är en del av någon linjär tv-sändning, t.ex. filmer som är tillgängliga att hyra. Detta betyder att användare, genom att använda IPTV, kan få tillgång till mer videoinnhåll än vad som är möjligt med traditionella tv-distributionsformat. Att ha fler valmöjligheter innebär dock även att det blir svårare att bestämma sig för vad man ska titta på, och det är viktigt att IPTV-leverantörer underlättar processen att hitta intressant innehåll så att användarna finner värde i att använda deras tjänster. I detta exjobb undersökte författaren hur en användares sociala nätverk på Internet kan användas som grund för att underlätta upptäckandet av intressanta filmer i en IPTV miljö. Undersökningen bestod av två delar, en teoretisk och en praktisk. I den teoretiska delen genomfördes en litteraturstudie för att få kunskap om olika rekommendationssystemsstrategier. Utöver litteraturstudien identifierades ett antal sociala nätverk på Internet som studerades empiriskt för att få kunskap om vilken data som är möjlig att hämta in från dem och hur datan kan inhämtas. I den praktiska delen utformades och byggdes en prototyp av ett s.k. content discovery system (“system för att upptäcka innehåll”), som använde sig av den insamlade datan. Detta gjordes för att exponera svårigheter som finns med att implementera ett sådant system. Studien visar att, även om det är möjligt att samla in data från olika sociala nätverk på Internet så erbjuder inte alla data i en form som är lätt att använda i ett content discovery system. Av de undersökta sociala nätverkstjänsterna visade det sig att Facebook erbjuder data som är lättast att samla in och använda. Det största hindret, ur ett tekniskt perspektiv, visade sig vara matchningen av filmtitlar som inhämtats från den sociala nätverkstjänsten med filmtitlarna i IPTV-leverantörens databas; en anledning till detta är att filmer kan ha titlar på olika språk.
|
3 |
Virtual group movie recommendation system using social network informationManamolela, Lefats'e 27 November 2019 (has links)
M. Tech. (Department of Information and Communication Technology, Faculty of Applied and Computer Sciences), Vaal University of Technology. / Since their emergence in the 1990’s, recommendation systems have transformed the intelligence of both the web and humans. A pool of research papers has been published in various domains of recommendation systems. These include content based, collaborative and hybrid filtering recommendation systems. Recommendation systems suggest items to users and their principal purpose is to increase sales and recommend items that are predicted to be suitable for users. They achieve this through making calculations based on data that is available on the system. In this study, we give evidence that the research on group recommendation systems must look more carefully at the dynamics of group decision-making in order to produce technologies that will be more beneficial for groups based on the individual interests of group members while also striving to maximise satisfaction. The matrix factorization algorithm of collaborative filtering was used to make predictions and three movie recommendation for each and every individual user. The three recommendations were of three highest predicted movies above the pre-set threshold which was three. Thereafter, four virtual groups of varied sizes were formed based on four highest predicted movies of the users in the dataset. Plurality voting strategy was used to achieve this. A publicly available dataset based on Group Recommender Systems Enhanced by Social Elements, constructed by Lara Quijano from the Group of Artificial Intelligence Applications (GIGA), was used for experiments. The developed recommendation system was able to successfully make individual movie recommendations, generate virtual groups, and recommend movies to these respective groups. The system was evaluated for accuracy in making predictions and it was able to achieve 0.7027 MAE and 0.8996 RMSE. This study was able to recommend to virtual groups to enable social network group members to engage in discussions of recommended items. The study encourages members in engaging in similar activities in their respective physical locations and then discuss on social network.
|
Page generated in 0.1245 seconds