• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Making Moves: Exploring Adaptability in Makerspaces

Rapavi, Paulina E. 02 June 2021 (has links)
Adaptability is defined as having the capacity to be modified for a new use or purpose; the quality of being able to adjust to new conditions. Adaptability in a space can have many venues and effects depending on the intent of its flexibility. This thesis will explore several methods of adaptability in design in context with a Makerspace, a community space which functions to provide the facilities and work environment for a variety of creators to use. In a building typology, a Makerspace with a large variety of users, the ability for the spaces to be informed by and reactive to each individual user is imperative to its objective. The approach to exploring adaptable design solutions is in analyzing the potential makers occupying the space, what their specific needs are and how can architectural designs become flexible in a way that allows the Makers to craft their own work environments. The primary objectives of this thesis are to: 1. Explore some of the various definitions of adaptability and how those meanings can be incorporated into design solutions 2. Identify spaces in the project that can be adapted for their specific purpose 3. Determine the methods of adaptability suited to the building typology and its users 4. Discuss adaptable design in terms of fixed and kinetic characteristics 5. Design spaces that are responsive to the site, the project's purpose and the unique needs of each user. The site of the project is located on the 500 block of South Broadway Street, Baltimore MD in the upper Fells Point district. Site dimensions are roughly 55' by 200' of infill space between surrounding retail and residential properties. This site was chosen to accommodate a Makerspace as it is central to Baltimore city's three major arts districts (Bromo, Highlandtown, and Station North Arts Districts) and could be considered a hub where local makers convene and establish a work space for a period of time that has the specific equipment and environment they require. / Master of Architecture / Adaptability is defined as having the capacity to be modified for a new use or purpose; the quality of being able to adjust to new conditions. This thesis explores ways in which architectural design can be adaptable. To have the quality of being able to adjust to new conditions, in this case the people that will use the space and the purpose of the spaces. Baltimore city is home to a large variety of local artists and creators working on their craft. The three major arts districts in the city, Bromo, Highlandtown, and Station North cultivate a community of people that create and consume artistic and innovative projects. In order to most successfully create, an artist should have access to a work environment that is not a hindrance but an asset to their process. The arts community of Baltimore could greatly benefit from a place that offers suitable work environments to a community which does not typically have a designated place. This thesis uses the building type: Makerspace which is a facility used as a tool for creators or "makers" to enter with an idea and facilitate a project. A makerspace can provide access to communal equipment that would otherwise be expensive for the individual maker to own, private and/or public work spaces to use for the maker's individual needs and a sense of community. The Makerspace was chosen as the vessel for exploration into adaptable design because of the nature of the building's purpose. The people that will inhabit and use the spaces will have a variety of specific needs in a work space. I wanted to explore how the designs of spaces could become flexible to accommodate those specific needs. The primary objectives of this thesis are to: 1. Explore some of the various definitions of adaptability and how those meanings can be incorporated into design solutions 2. Identify spaces in the project that can be adapted for their specific purpose 3. Determine the methods of adaptability suited to the building typology and its users 4. Discuss adaptable design in terms of fixed and kinetic characteristics 5. Design spaces that are responsive to the site, the project's purpose and the unique needs of each user.
2

Thermal and Fluidic Characterization of Tesla Valve Via Computational Fluid Dynamics

Porwal, Piyush 07 May 2016 (has links)
Tesla valve applications for passive flow enhancement in micro fluidic applications are promising, because of its design of no-moving-parts. The effectiveness of the valve (measured via its pressure and thermal diodicity) can be increased by creating a multi-staged Tesla valve. Present study investigates the effect of varying Reynolds number (25-200) on flow rectification and thermal enhancement capability of a Tesla valve. Gamboa Morris Forster (GMF) design with a cross-section of 1mm2 and constant valve-to-valve distance (1mm) was utilized for this research. An arbitrary fluid with constant properties at a reference temperature was used as the working fluid. Periodicity in flow and thermal distribution are noticed in the latter part of MSTV. Average friction factor and pressure diodicity decreased with increasing Reynolds number whereas average Nusselt number and thermal diodicity increased. Correlations for friction factor, pressure diodicity, Nusselt number, and thermal diodicity were derived by fitting a non-linear curve fit model.
3

Tesla Valve for Hydrogen Decompression : Fluid Dynamic Analysis

Bäckman, Elias, Willén, Mathilda January 2019 (has links)
Människans påverkan på växthuseffekten har under de senaste åren varit en mycket aktuell fråga. Det är många olika faktorer som bidrar till ett negativt avtryck på miljön, där ett stort bidrag kommer från sektorn bilindustri. Majoriteten av dagens bilar drivs på fossila bränslen som genererar skadande utsläpp på miljön. Att hitta nya alternativa bränslen som är förnyelsebara och energivänliga som kan ersätta de fossila skulle kunna leda till ett signifikant minskat avtryck på klimat och miljö. Att använda väte som bränsle och i synnerhet att driva fordonet på vätgas är ett av de alternativen då avgivna utsläpp endast består av vatten och varm luft, förutsatt att man använder sig av förnybar energi vid framställning av vätgasen. I bränsletanken återfinns ett högt tryck hos vätgasdrivna bilar, detta för att mer bränsle ska kunna förvaras och därmed öka antal mil möjliga att köra på en tank. Ett tryckfall är nödvändigt för att förse bränslecellen med vätgas vid rätt tryck, och för att uppnå högst möjliga verkningsgrad. Teslaventilen har inga rörliga delar vilket medför ett brett spektrum av applikationer i industriella situationer på grund av dess uthållighetsegenskaper. För att kunna kategorisera prestandan och uppnå optimal effekt krävs förståelse om ventilens geometriska uppbyggnad. Med rätt geometri på Tesla-ventilens olika strukturparametrar kan man uppnå ett högt tryckfall, med andra ord en hög prestanda. I denna studie har tre olika geometriska parametrar hos Tesla-ventilen undersökts för att kunna dra slutsatser och etablera deras optimala värden för bästa prestanda. Parametrarna som varit av intresse är innerradien på kurvan av Tesla-ventilen, avståndet mellan flera sammankopplade ventiler och tvärsnittets utformning. Resultaten erhölls genom numeriska metoder av Computational Fluid Dynamics simuleringar i programmet ANSYS Fluent. Resultat visade att en liten innerradie och ett längre avstånd mellan flera sammankopplade ventiler gav upphov till högre tryckfall. Tvärsnitten som undersöktes var rektangulärt och cirkulärt, där det cirkulära visade en bättre förmåga av att effektivt sänka trycket hos fluiden. Slutsatser som drogs var att cirkulärt tvärsnitt var att föredra och att en liten innerradie och ett stort avstånd mellan ventiler optimerar prestandan hos Tesla-ventiler. / 在过去的几年里,人类对温室效应的影响一直是社会舆论中一个突出和争论的主 题。对环境造成负面影响的因素有很多,汽车便是其中之一。如今,大多数汽车依靠 化石燃料驱动,在这个过程中会造成有毒物质的排放。因此,对可再生与环境友好的 替代燃料的研究重要性愈发突出。氢,(更具体地说,氢气),由于燃烧产物只有 水,成为了一种可选的替代燃料。 在氢燃料汽车的储氢罐中,往往设置高压以提高氢气储量并增加里程数。而为了 保证燃料电池高效运行,在储氢罐和燃料电池之间必须采取减压手段,这也使高效降 压成为了氢燃料汽车研究领域中的一个长期需求。特斯拉阀在没有活动部件的情况 下,允许流体沿一个方向流动,并限制其往相反方向流动。该概念在工业环境中具备 广泛的应用潜力,而理解特斯拉阀(的工作机理)对于表征设备性能非常重要。采用 最优几何形状的特斯拉阀,可以实现高压降,换言之高性能。 本研究对特斯拉阀的三种结构参数进行了调查,得出了使特斯拉阀降压性能达到 最优时的参数值。所研究的三种参数分别是内部曲线半径,多级特斯拉阀中的阀间距 以及阀门的横截面。为了获得结果,使用计算流体动力学软件 ANSYS Fluent 进行了数 值模拟。结果表明,与较大的半径相比,较小的内部曲线半径产生更高的压降。随着 多级特斯拉阀的阀间距增大,阀门降压性能提高。对横截面的研究中,比较了矩形截 面和圆形截面的特斯拉阀的降压性能,发现圆形截面的特斯拉阀降压性能更优。本研 究的最终结论是(在特斯拉阀设计中采用)圆形横截面,小的内部曲线半径和大的阀 间距可以提高装置性能。 / The last couple of years, the footprint of humankind on the greenhouse effect has been a highlighted and debated topic. There are many contributing factors to the negative impacts on the environment, one of them being the sector of automobile. Today, most cars are driven on fossil fuel energy which produces toxic emissions. The search for replaceable alternative fuels is hence of importance and keys of demands are renewable energy and energy-friendly resources. Hydrogen as a fuel, in particular the hydrogen gas, is one of the options considering the only residues to be water and hot air, provided that the energy used in the hydrogen production comes from renewable sources. In the storage tank of cars fueled by hydrogen gas, a high pressure is set due to its advantages of opportunities of more storage and thus increased mileage of the tank. A decompression process is necessary to supply the fuel cell with hydrogen gas at the right pressure, and thus achieve highest possible degree of efficiency. The concept offers a wide set of application opportunities in industrial situations and understanding the valve is important for characterizing the performance on the device. Given correct and optimal geometry on the Tesla valve, a high pressure-drop could be achieved, in other words a high performance. In this study three geometric parameters were investigated in order to conclude their ideal value for optimizing the performance. The parameters of interest were the inner curve radius, the valveto-valve distance in a multi-stage Tesla valve and the cross-section of the valve. In order to obtain the results, a numerical study was conducted using simulations in a Computational Fluid Dynamics program, ANSYS Fluent. The results denoted that a small inner curve radius yielded the highest pressure-drop when comparing to larger radius’. The performance was enhanced with a large valveto-valve distance of the multi-stage Tesla valves and the findings of the cross-sections, which were chosen to be rectangular and circular of interest, displayed a superior performance for the circular cross-sections. Conclusions were drawn that circular cross-section is to prefer and that a small inner curve radius and large valve-to-valve distance yield an enhanced performance of the device.

Page generated in 0.0648 seconds