• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ultrahigh Field Functional Magnetic Resonance Electrical Impedance Tomography (fMREIT) in Neural Activity Imaging

January 2019 (has links)
abstract: A direct Magnetic Resonance (MR)-based neural activity mapping technique with high spatial and temporal resolution may accelerate studies of brain functional organization. The most widely used technique for brain functional imaging is functional Magnetic Resonance Image (fMRI). The spatial resolution of fMRI is high. However, fMRI signals are highly influenced by the vasculature in each voxel and can be affected by capillary orientation and vessel size. Functional MRI analysis may, therefore, produce misleading results when voxels are nearby large vessels. Another problem in fMRI is that hemodynamic responses are slower than the neuronal activity. Therefore, temporal resolution is limited in fMRI. Furthermore, the correlation between neural activity and the hemodynamic response is not fully understood. fMRI can only be considered an indirect method of functional brain imaging. Another MR-based method of functional brain mapping is neuronal current magnetic resonance imaging (ncMRI), which has been studied over several years. However, the amplitude of these neuronal current signals is an order of magnitude smaller than the physiological noise. Works on ncMRI include simulation, phantom experiments, and studies in tissue including isolated ganglia, optic nerves, and human brains. However, ncMRI development has been hampered due to the extremely small signal amplitude, as well as the presence of confounding signals from hemodynamic changes and other physiological noise. Magnetic Resonance Electrical Impedance Tomography (MREIT) methods could have the potential for the detection of neuronal activity. In this technique, small external currents are applied to a body during MR scans. This current flow produces a magnetic field as well as an electric field. The altered magnetic flux density along the main magnetic field direction caused by this current flow can be obtained from phase images. When there is neural activity, the conductivity of the neural cell membrane changes and the current paths around the neurons change consequently. Neural spiking activity during external current injection, therefore, causes differential phase accumulation in MR data. Statistical analysis methods can be used to identify neuronal-current-induced magnetic field changes. / Dissertation/Thesis / Doctoral Dissertation Biomedical Engineering 2019
2

Validation of Transcranial Electrical Stimulation (TES) Finite Element Modeling Against MREIT Current Density Imaging in Human Subjects

January 2017 (has links)
abstract: Transcranial electrical stimulation (tES) is a non-invasive brain stimulation therapy that has shown potential in improving motor, physiological and cognitive functions in healthy and diseased population. Typical tES procedures involve application of weak current (< 2 mA) to the brain via a pair of large electrodes placed on the scalp. While the therapeutic benefits of tES are promising, the efficacy of tES treatments is limited by the knowledge of how current travels in the brain. It has been assumed that the current density and electric fields are the largest, and thus have the most effect, in brain structures nearby the electrodes. Recent studies using finite element modeling (FEM) have suggested that current patterns in the brain are diffuse and not concentrated in any particular brain structure. Although current flow modeling is useful means of informing tES target optimization, few studies have validated tES FEM models against experimental measurements. MREIT-CDI can be used to recover magnetic flux density caused by current flow in a conducting object. This dissertation reports the first comparisons between experimental data from in-vivo human MREIT-CDI during tES and results from tES FEM using head models derived from the same subjects. First, tES FEM pipelines were verified by confirming FEM predictions agreed with analytic results at the mesh sizes used and that a sufficiently large head extent was modeled to approximate results on human subjects. Second, models were used to predict magnetic flux density, and predicted and MREIT-CDI results were compared to validate and refine modeling outcomes. Finally, models were used to investigate inter-subject variability and biological side effects reported by tES subjects. The study demonstrated good agreements in patterns between magnetic flux distributions from experimental and simulation data. However, the discrepancy in scales between simulation and experimental data suggested that tissue conductivities typically used in tES FEM might be incorrect, and thus performing in-vivo conductivity measurements in humans is desirable. Overall, in-vivo MREIT-CDI in human heads has been established as a validation tool for tES predictions and to study the underlying mechanisms of tES therapies. / Dissertation/Thesis / Doctoral Dissertation Biomedical Engineering 2017

Page generated in 0.0207 seconds