• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation and Performance Evaluation of Hadoop Capacity Scheduler

2013 June 1900 (has links)
MapReduce is a parallel programming paradigm used for processing huge datasets on certain classes of distributable problems using a cluster. Budgetary constraints and the need for better usage of resources in a MapReduce cluster often make organizations rent or share hardware resources for their main data processing and analysis tasks. Thus, there may be many competing jobs from different clients performing simultaneous requests to the MapReduce framework on a particular cluster. Schedulers like Fair Share and Capacity have been specially designed for such purposes. Administrators and users run into performance problems, however, because they do not know the exact meaning of different task scheduler settings and what impact they can have with respect to the resource allocation scheme across organizations for a shared MapReduce cluster. In this work, Capacity Scheduler is integrated into an existing MRPERF simulator to predict the performance of MapReduce jobs in a shared cluster under different settings for Capacity Scheduler. A few case studies on the behaviour of Capacity Scheduler across different job patterns etc. using integrated simulator are also conducted.

Page generated in 0.0289 seconds