• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Theoretical Framework for Modeling Ingressive Phonation

Brougham, Michael V Unknown Date
No description available.
2

Three Dimensional Characterization of Vocal Fold Fluid Structure Interactions

Nielson, Joseph R. 05 July 2012 (has links) (PDF)
Voice quality is strongly linked to quality of life; those who suffer from voice disorders are adversely affected in their social, family, and professional relationships. An effort has been made to more fully understand the physics behind how the voice is created, specifically the fluid structure interactions that occur during vocal fold vibration. Many techniques have been developed and implemented to study both the motion of the vocal folds and the airflow that creates the motion. Until recently these techniques have sought to understand a highly three-dimensional phenomenon with 1D or 2D perspectives.This research focuses on the development and implementation of an experimental technique to obtain three-dimensional characterizations of vocal fold motion and fluid flow. Experiments were performed on excised human vocal fold models at the University Hospital Erlangen Medical School in Erlangen, Germany. A novel technique for tracking the motion of the vocal folds using multiple camera viewpoints and limited user interaction was developed. Four high-speed cameras (2000 fps) recorded an excised vocal fold model vibrating at 250 Hz. Based on the images from these four cameras a fully 3D reconstruction of the superior surface of the vocal folds was achieved. The 3D reconstruction of 70 consecutive time steps was assembled to characterize the motion of the vocal folds over eight cycles. The 3D reconstruction accurately modeled the observed behavior of vocal fold vibration with a clearly visible mucosal wave. The average reprojection error for this technique was on par with other contemporary techniques (~20 micrometers). A whole field, time resolved, three-dimensional reconstruction of the vocal fold fluid flow was obtained using synthetic aperture particle image velocimetry. Simultaneous 3D flow fields, subglottal pressure waves, and superior surface motion were presented for 2 consecutive cycles of oscillation. The vocal fold fluid flow and motion measurements correlated with behavior observed in previous three-dimensional studies. A higher resolution view of one full cycle of oscillation was compiled from 16 time resolved data sets via pressure data. The result was a full three-dimensional characterization of the evolution and disintegration of the glottal jet.
3

Influence of Material and Geometric Parameters on the Flow-Induced Vibration of Vocal Folds Models

Pickup, Brian A. 13 July 2010 (has links) (PDF)
The vocal folds are an essential component of human speech production and communication. Advancements in voice research allow for improved voice disorder treatments. Since in vivo analysis of vocal fold function is limited, models have been developed to simulate vocal fold motion. In this research, synthetic and computational vocal fold models were used to investigate various aspects of vocal fold vibratory characteristics. A series of tests were performed to quantify the effect of varying material and geometric parameters on the models' flow-induced responses. First, the influence of asymmetric vocal fold stiffness on voice production was evaluated using life-sized, self-oscillating vocal fold models with idealized vocal fold geometry. Asymmetry significantly influenced glottal jet flow, glottal area, and vibration frequency. Second, flow-induced responses of simplified and MRI-based synthetic models were compared. The MRI-based models showed remarkable improvements, including less vertical motion, alternating convergent-divergent glottal profile patterns, and mucosal wave-like movement. Third, a simplified model was parametrically investigated via computational modeling techniques to determine which geometric features influenced model motion. This parametric study led to identification and ranking of key geometric parameters based on their effects on various measures of vocal fold motion (e.g., mucosal wavelike movement). Incorporation of the results of these studies into the definition of future models could lead to models with more life-like motion.
4

Flow-induced Responses of Normal, Bowed, and Augmented Synthetic Vocal Fold Models

Murray, Preston Roylance 10 August 2011 (has links) (PDF)
The voice is the primary mode of communication for humans. Because the voice is so important, voice disorders tend to severely diminish quality of life. A better understanding of the physics of voice production can help to improve treatment of voice disorders. For this thesis research a self-oscillating synthetic vocal fold model was developed, compared with previous synthetic vocal fold models, and used to explore the physical effects of augmentation injections on vibration dynamics. The research was conducted in two stages. First, four vocal fold models were evaluated by quantifying onset pressure, frequency, maximum glottal gap, flow rate, and medial surface motion. The newly developed model, differentiated from the other models by the inclusion of more layers, adjusted geometry, and an extremely soft superficial lamina propria layer, was included in this study. One of the models, created using MRI-derived geometry, had the most defined mucosal wave. The newly-developed model had the lowest onset pressure, flow rate, and smallest maximum glottal width, and the model motion compared very well with published excised human larynx data. Second, the new model was altered to simulate bowing by decreasing the volume of the body layer relative to that of a normal, unbowed model. Two models with varying degrees of bowing were created and tested while paired with normal models. Pre- and post-injection data (onset pressure, vibration frequency, glottal flow rate, open quotient, and high-speed image sequences) were recorded and compared. General pre- to post-injection trends included decreased onset pressure, glottal flow rate, and open quotient, and increased vibration frequency. Additionally, there was a decrease in mucosal wave velocity and an increase in phase angle. The thesis results are anticipated to aid in better understanding the physical effects of augmentation injections, with the ultimate goal of obtaining more consistent surgical outcomes, and also to contribute to the advancement of voice research through the development of the new synthetic model.

Page generated in 0.0395 seconds