61 |
Multi-modal Public Transport Network Design MethodLiu, Mingui January 2023 (has links)
With the rapid development of industrialization and urbanization, industrial development and population growth drive the expansion of urban space, urban transportation demand shows the characteristics of spatial decentralization and diversification, and transportation travelers' requirements for mobility, accessibility, and comfort of transportation travel services are enhanced. Mobility on demand (MoD) services such as DiDi and Uber are new modes of public transportation, bringing many new opportunities and challenges. MoD travel services, shared bicycles, and other complementary public transport modes are rapidly developing in the "Internet +" environment, serving the "one mile" before and after the residents' travel. MoD technologies play an important role as a feeder to the main public transportation lines, helping to increase public transportation patronage and improve the speed of travel for residents. In this context, the study aims to develop a multi-modal public transportation system network design methodology to provide better operational coordination between different modes of transportation and to provide faster travel services. In order to promote better coordination between different transportation modes and to provide theoretical and methodological support for the development of a multi-modal public transportation system network design system, a bi-level planning model for this problem is first constructed. The upper-level planning model is used to minimize the total travel time and cost of passengers and the economic cost of public transportation operators, and to decide which bus lines to operate, the structure of bus lines, and the frequency of operating bus lines; the lower-level operating model is used to assign passengers to make travel mode choices and to carry out traffic distribution of the public transportation network based on the minimum number of interchanges. Then, based on this bi-level planning model, an improved genetic algorithm is developed to solve the upper-level public transportation network planning problem, in which the algorithm for passenger flow allocation in the lower-level planning model is nested in the genetic algorithm. Finally, the developed methodology is validated for the benchmark Mandl network design by comparing with the traditional public transportation network. The results show that the multi-modal public transportation network can effectively reduce passenger travel time compared with the traditional public transportation network at similar costs. Finally, we applied the network design method for the Barkarby area in the north of Stockholm, Sweden. The results show that it is appropriate to allocate mobility on demand vehicles in this area. The constructed model and the proposed algorithm are scientifically valid and can provide theoretical methodological reference and decision support for engineering practice.
|
62 |
“DESIGNING” IN THE 21ST CENTURY ENGLISH LANGUAGE ARTS CLASSROOM: PROCESSES AND INFLUENCES IN CREATING MULTIMODAL VIDEO NARRATIVESPowers, Jennifer Ann 13 December 2007 (has links)
No description available.
|
63 |
Shifting Gears: A Bicycle and Pedestrian Plan for Oxford, OhioDragovich, Anna Louise 15 August 2012 (has links)
No description available.
|
64 |
What is the best combination of exercises to implement in multi-modal exercise programs to treat bradykinesia for patients with Parkinson's disease? A systematic review.Bevins, MaKenzie R. January 2018 (has links)
No description available.
|
65 |
Inverse Modeling: Theory and Engineering ExamplesYarlagadda, Rahul Rama Swamy January 2015 (has links)
No description available.
|
66 |
Design and use of a bimodal cognitive architecture for diagrammatic reasoning and cognitive modelingKurup, Unmesh 07 January 2008 (has links)
No description available.
|
67 |
Smart City Energy Efficient Multi-Modal Transportation Modeling and Route PlanningGhanem, Ahmed Mohamed Abdelaleem 25 June 2020 (has links)
As concerns about climate change increase, many people are calling for reductions in the use of fossil fuels and encouraging a shift to more sustainable and less polluting transportation modes. Cities and urban areas are more concerned because their population currently comprises over half of the world's population. Sustainable transportation modes such as cycling, walking, and use of public transit and electric vehicles can benefit the environment in many ways, including a reduction in toxic greenhouse gas (GHG) emissions and noise levels. In order to enhance the trend of using sustainable modes of transportation, tools, measures, and planning techniques similar to those used for vehicular transportation need to be developed. In this dissertation, we consider four problems in the context of different sustainable modes of transportation, namely, cycling, rail, public transit, and ridesharing. We develop different models to predict bike travel times for use in bike share systems (BSSs) using random forest (RF), least square boosting (LSBoost), and artificial neural network (ANN) techniques. We also use cycling Global Positioning System (GPS) data collected from 10 people (3 females and 7 males) to study cyclists' acceleration/deceleration behavior. Moreover, we develop a continuous rail transit simulator (RailSIM) intended for multi-modal energy-efficient routing applications. Finally, we propose a dynamic trip planning system that integrates ridesharing and public transit. The work done in this dissertation can help encouraging more people to move to more sustainable modes of transportation. / Doctor of Philosophy / As concerns about climate change increase, many people are calling for reductions in the use of fossil fuels and encouraging a shift to more sustainable and less polluting transportation modes. Cities and urban areas are more concerned because their population currently comprises over half of the world's population. Sustainable transportation modes such as cycling, walking, and use of public transit and electric vehicles can benefit the environment in many ways, including a reduction of toxic greenhouse gas (GHG) emissions and noise levels. In order to enhance the trend of using sustainable modes of transportation, tools, measures, and planning techniques similar to those used for vehicular transportation need to be developed. In this dissertation, we consider four problems in the context of different sustainable modes of transportation, namely, cycling, rail, public transit, and ridesharing. We develop different models to predict bike travel times in bike share systems (BSSs) using machine learning techniques. We also use cycling Global Positioning System (GPS) data collected from 10 people (3 females and 7 males) to study cyclists' acceleration/deceleration behavior. Moreover, we develop a continuous rail transit simulator (RailSIM) intended for multi-modal energy-efficient routing applications. Finally, we propose a dynamic trip planning system that integrates ridesharing and public transit. The work done in this dissertation can help encouraging more people to move to more sustainable modes of transportation.
|
68 |
A Voice-based Multimodal User Interface for VTQuestSchneider, Thomas W. 14 June 2005 (has links)
The original VTQuest web-based software system requires users to interact using a mouse or a keyboard, forcing the users' hands and eyes to be constantly in use while communicating with the system. This prevents the user from being able to perform other tasks which require the user's hands or eyes at the same time. This restriction on the user's ability to multitask while using VTQuest is unnecessary and has been eliminated with the creation of the VTQuest Voice web-based software system. VTQuest Voice extends the original VTQuest functionality by providing the user with a voice interface to interact with the system using the Speech Application Language Tags (SALT) technology. The voice interface provides the user with the ability to navigate through the site, submit queries, browse query results, and receive helpful hints to better utilize the voice system. Individuals with a handicap that prevents them from using their arms or hands, users who are not familiar with the mouse and keyboard style of communication, and those who have their hands preoccupied need alternative communication interfaces which do not require the use of their hands. All of these users require and benefit from a voice interface being added onto VTQuest. Through the use of the voice interface, all of the system's features can be accessed exclusively with voice and without the use of a user's hands. Using a voice interface also frees the user's eyes from being used during the process of selecting an option or link on a page, which allows the user to look at the system less frequently. VTQuest Voice is implemented and tested for operation on computers running Microsoft Windows using Microsoft Internet Explorer with the correct SALT and Adobe Scalable Vector Graphics (SVG) Viewer plug-ins installed. VTQuest Voice offers a variety of features including an extensive grammar and out-of-turn interaction, which are flexible for future growth. The grammar offers ways in which users may begin or end a query to better accommodate the variety of ways users may phrase their queries. To accommodate for abbreviations of building names and alternate pronunciations of building names, the grammar also includes nicknames for the buildings. The out-of-turn interaction combines multiple steps into one spoken sentence thereby shortening the interaction and also making the process more natural for the user. The addition of a voice interface is recommended for web applications which a user may need to use his or her eyes and hands to multitask. Additional functionality which can be added later to VTQuest Voice is touch screen support and accessibility from cell phones, Personal Digital Assistants (PDAs), and other mobile devices. / Master of Science
|
69 |
Analytical fusion of multimodal magnetic resonance imaging to identify pathological states in genetically selected Marchigian Sardinian alcohol-preferring (msP) ratsCosa Liñán, Alejandro 06 November 2017 (has links)
[EN] Alcohol abuse is one of the most alarming issues for the health authorities. It is estimated that at least 23 million of European citizens are affected by alcoholism causing a cost around 270 million euros. Excessive alcohol consumption is related with physical harm and, although it damages the most of body organs, liver, pancreas, and brain are more severally affected. Not only physical harm is associated to alcohol-related disorders, but also other psychiatric disorders such as depression are often comorbiding. As well, alcohol is present in many of violent behaviors and traffic injures. Altogether reflects the high complexity of alcohol-related disorders suggesting the involvement of multiple brain systems.
With the emergence of non-invasive diagnosis techniques such as neuroimaging or EEG, many neurobiological factors have been evidenced to be fundamental in the acquisition and maintenance of addictive behaviors, relapsing risk, and validity of available treatment alternatives. Alterations in brain structure and function reflected in non-invasive imaging studies have been repeatedly investigated. However, the extent to which imaging measures may precisely characterize and differentiate pathological stages of the disease often accompanied by other pathologies is not clear. The use of animal models has elucidated the role of neurobiological mechanisms paralleling alcohol misuses. Thus, combining animal research with non-invasive neuroimaging studies is a key tool in the advance of the disorder understanding.
As the volume of data from very diverse nature available in clinical and research settings increases, an integration of data sets and methodologies is required to explore multidimensional aspects of psychiatric disorders. Complementing conventional mass-variate statistics, interests in predictive power of statistical machine learning to neuroimaging data is currently growing among scientific community.
This doctoral thesis has covered most of the aspects mentioned above. Starting from a well-established animal model in alcohol research, Marchigian Sardinian rats, we have performed multimodal neuroimaging studies at several stages of alcohol-experimental design including the etiological mechanisms modulating high alcohol consumption (in comparison to Wistar control rats), alcohol consumption, and treatment with the opioid antagonist Naltrexone, a well-established drug in clinics but with heterogeneous response. Multimodal magnetic resonance imaging acquisition included Diffusion Tensor Imaging, structural imaging, and the calculation of magnetic-derived relaxometry maps. We have designed an analytical framework based on widely used algorithms in neuroimaging field, Random Forest and Support Vector Machine, combined in a wrapping fashion. Designed approach was applied on the same dataset with two different aims: exploring the validity of the approach to discriminate experimental stages running at subject-level and establishing predictive models at voxel-level to identify key anatomical regions modified during the experiment course.
As expected, combination of multiple magnetic resonance imaging modalities resulted in an enhanced predictive power (between 3 and 16%) with heterogeneous modality contribution. Surprisingly, we have identified some inborn alterations correlating high alcohol preference and thalamic neuroadaptations related to Naltrexone efficacy. As well, reproducible contribution of DTI and relaxometry -related biomarkers has been repeatedly identified guiding further studies in alcohol research.
In summary, along this research we demonstrate the feasibility of incorporating multimodal neuroimaging, machine learning algorithms, and animal research in the advance of the understanding alcohol-related disorders. / [ES] El abuso de alcohol es una de las mayores preocupaciones de las autoridades sanitarias en la Unión Europea. El consumo de alcohol en exceso afecta en mayor o menor medida la totalidad del organismo siendo el páncreas e hígado los más severamente afectados. Además de estos, el sistema nervioso central sufre deterioros relacionados con el alcohol y con frecuencia se presenta en paralelo con otras patologías psiquiátricas como la depresión u otras adicciones como la ludopatía. La presencia de estas comorbidades demuestra la complejidad de la patología en la que multitud de sistemas neuronales interaccionan entre sí.
El uso imágenes de resonancia magnética (RM) han ayudado en el estudio de enfermedades psiquiátricas facilitando el descubrimiento de mecanismos neurológicos fundamentales en el desarrollo y mantenimiento de la adicción al alcohol, recaídas y el efecto de los tratamientos disponibles. A pesar de los avances, todavía se necesita investigar más para identificar las bases biológicas que contribuyen a la enfermedad. En este sentido, los modelos animales sirven, por lo tanto, a discriminar aquellos factores únicamente relacionados con el alcohol controlando otros factores que facilitan el desarrollo del alcoholismo. Estudios de resonancia magnética en animales de laboratorio y su posterior evaluación en humanos juegan un papel fundamental en el entendimiento de las patologías psiquatricas como la addicción al alcohol.
La imagen por resonancia magnética se ha integrado en entornos clínicos como prueba diagnósticas no invasivas. A medida que el volumen de datos se va incrementando, se necesitan herramientas y metodologías capaces de fusionar información de muy distinta naturaleza y así establecer criterios diagnósticos cada vez más exactos. El poder predictivo de herramientas derivadas de la inteligencia artificial como el aprendizaje automático sirven de complemento a tradicionales métodos estadísticos.
En este trabajo se han abordado la mayoría de estos aspectos. Se han obtenido datos multimodales de resonancia magnética de un modelo validado en la investigación de patologías derivadas del consumo del alcohol, las ratas Marchigian-Sardinian desarrolladas en la Universidad de Camerino (Italia) y con consumos de alcohol comparables a los humanos. Para cada animal se han adquirido datos antes y después del consumo de alcohol y bajo dos condiciones de abstinencia (con y sin tratamiento de Naltrexona, una medicaciones anti-recaídas usada como farmacoterapia en el alcoholismo). Los datos de resonancia magnética multimodal consistentes en imágenes de difusión, de relaxometría y estructurales se han fusionado en un esquema analítico multivariable incorporando dos herramientas generalmente usadas en datos derivados de neuroimagen, Random Forest y Support Vector Machine. Nuestro esquema fue aplicado con dos objetivos diferenciados. Por un lado, determinar en qué fase experimental se encuentra el sujeto a partir de biomarcadores y por el otro, identificar sistemas cerebrales susceptibles de alterarse debido a una importante ingesta de alcohol y su evolución durante la abstinencia.
Nuestros resultados demostraron que cuando biomarcadores derivados de múltiples modalidades de neuroimagen se fusionan en un único análisis producen diagnósticos más exactos que los derivados de una única modalidad (hasta un 16% de mejora). Biomarcadores derivados de imágenes de difusión y relaxometría discriminan estados experimentales. También se han identificado algunos aspectos innatos que están relacionados con posteriores comportamientos con el consumo de alcohol o la relación entre la respuesta al tratamiento y los datos de resonancia magnética.
Resumiendo, a lo largo de esta tesis, se demuestra que el uso de datos de resonancia magnética multimodales en modelos animales combinados en esquemas analíticos multivariados es una herramienta válida en el entendimiento de patologías / [CAT] L'abús de alcohol es una de les majors preocupacions per part de les autoritats sanitàries de la Unió Europea. Malgrat la dificultat de establir xifres exactes, se estima que uns 23 milions de europeus actualment sofreixen de malalties derivades del alcoholisme amb un cost que supera els 150.000 milions de euros per a la societat. Un consum de alcohol en excés afecta en major o menor mesura el cos humà sent el pàncreas i el fetge el més afectats. A més, el cervell sofreix de deterioraments produïts per l'alcohol i amb freqüència coexisteixen amb altres patologies com depressió o altres addiccions com la ludopatia. Tot aquest demostra la complexitat de la malaltia en la que múltiple sistemes neuronals interactuen entre si.
Tècniques no invasives com el encefalograma (EEG) o imatges de ressonància magnètica (RM) han ajudat en l'estudi de malalties psiquiàtriques facilitant el descobriment de mecanismes neurològics fonamentals en el desenvolupament i manteniment de la addició, recaiguda i la efectivitat dels tractaments disponibles. Tot i els avanços, encara es necessiten més investigacions per identificar les bases biològiques que contribueixen a la malaltia. En aquesta direcció, el models animals serveixen per a identificar únicament dependents del abús del alcohol. Estudis de ressonància magnètica en animals de laboratori i posterior avaluació en humans jugarien un paper fonamental en l' enteniment de l'ús del alcohol.
L'ús de probes diagnostiques no invasives en entorns clínics has sigut integrades. A mesura que el volum de dades es incrementa, eines i metodologies per a la fusió d' informació de molt distinta natura i per tant, establir criteris diagnòstics cada vegada més exactes. La predictibilitat de eines desenvolupades en el camp de la intel·ligència artificial com la aprenentatge automàtic serveixen de complement a mètodes estadístics tradicionals.
En aquesta investigació se han abordat tots aquestes aspectes. Dades multimodals de ressonància magnètica se han obtingut de un model animal validat en l'estudi de patologies relacionades amb el consum d'alcohol, les rates Marchigian-Sardinian desenvolupades en la Universitat de Camerino (Italià) i amb consums d'alcohol comparables als humans. Per a cada animal es van adquirir dades previs i després al consum de alcohol i dos condicions diferents de abstinència (amb i sense tractament anti-recaiguda). Dades de ressonància magnètica multimodal constituides per imatges de difusió, de relaxometria magnètica i estructurals van ser fusionades en esquemes analítics multivariats incorporant dues metodologies validades en el camp de neuroimatge, Random Forest i Support Vector Machine. Nostre esquema ha sigut aplicat amb dos objectius diferenciats. El primer objectiu es determinar en quina fase experimental es troba el subjecte a partir de biomarcadors obtinguts per neuroimatge. Per l'altra banda, el segon objectiu es identificar el sistemes cerebrals susceptibles de ser alterats durant una important ingesta de alcohol i la seua evolució durant la fase del tractament.
El nostres resultats demostraren que l'ús de biomarcadors derivats de varies modalitats de neuroimatge fusionades en un anàlisis multivariat produeixen diagnòstics més exactes que els derivats de una única modalitat (fins un 16% de millora). Biomarcadors derivats de imatges de difusió i relaxometria van contribuir de distints estats experimentals. També s'han identificat aspectes innats que estan relacionades amb posterior preferències d'alcohol o la relació entre la resposta al tractament anti-recaiguda i les dades de ressonància magnètica.
En resum, al llarg de aquest treball, es demostra que l'ús de dades de ressonància magnètica multimodal en models animals combinats en esquemes analítics multivariats són una eina molt valida en l'enteniment i avanç de patologies psiquiàtriques com l'alcoholisme. / Cosa Liñán, A. (2017). Analytical fusion of multimodal magnetic resonance imaging to identify pathological states in genetically selected Marchigian Sardinian alcohol-preferring (msP) rats [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90523
|
70 |
Multi-modal Aggression Identification Using Convolutional Neural Network and Binary Particle Swarm OptimizationKumari, K., Singh, J.P., Dwivedi, Y.K., Rana, Nripendra P. 10 January 2021 (has links)
Yes / Aggressive posts containing symbolic and offensive images, inappropriate gestures along with provocative textual
comments are growing exponentially in social media with the availability of inexpensive data services. These posts
have numerous negative impacts on the reader and need an immediate technical solution to filter out aggressive comments. This paper presents a model based on a Convolutional Neural Network (CNN) and Binary Particle Swarm
Optimization (BPSO) to classify the social media posts containing images with associated textual comments into
non-aggressive, medium-aggressive and high-aggressive classes. A dataset containing symbolic images and the corresponding textual comments was created to validate the proposed model. The framework employs a pre-trained
VGG-16 to extract the image features and a three-layered CNN to extract the textual features in parallel. The hybrid
feature set obtained by concatenating the image and the text features were optimized using the BPSO algorithm to
extract the more relevant features. The proposed model with optimized features and Random Forest classifier achieves
a weighted F1-Score of 0.74, an improvement of around 3% over unoptimized features.
|
Page generated in 0.0592 seconds