• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 11
  • 10
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 127
  • 127
  • 46
  • 24
  • 16
  • 16
  • 14
  • 14
  • 13
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Experimental Study of Multi-phase Flow Hydrodynamics in Stirring Tanks

Yang, Yihong 06 May 2011 (has links)
Stirring tanks are very important equipments used for mixing, separating, chemical reaction, etc. A typical stirring tank is a cylindrical vessel with an agitator driving the fluid and generating turbulence to promote mixing. Flotation cells are widely used stirring tanks in phase separation where multiphase flow is involved. Flotation refers to the process in which air bubbles selectively pick up hydrophobic particles and separate them from hydrophilic solids. This technology is used throughout the mining industry as well as the chemical and petroleum industries. In this research, efforts were made to investigate the multi-phase flow hydrodynamic problems of some flotation cells at different geometrical scales. Pitot-static and five-hope probes were employed to lab- pilot- and commercial-scale tanks for velocity measurements. It was found that the tanks with different scales have similar flow patterns over a range of Reynolds numbers. Based on the velocity measurement results, flotation tanks' performance was evaluated by checking the active volume in the bulk. A fast-response five-hole probe was designed and fabricated to study the turbulence characteristics in flotation cells under single- and multi-phase flow conditions. The jet stream in the rotor-stator domain has much higher turbulence intensity compared with other locations. The turbulent dissipation rate (TDR) in the rotor-stator domain is around 20 times higher than that near tank's wall. The TDR could be used to calculate the bubble and particle slip velocities. An isokinetic sampling probe system was developed to obtain true samples inthe multi-phase flow and then measure the local void fraction. It was found that the air bubbles are carried out by the stream and dispersed to the whole bulk. However, some of the bubbles accumulate in the inactive regions, where higher void fractions were detected. The isokinetic sampling probe was then extended to be an isokinetic borescope system, which was used to detect the bubble-particle aggregates in the tank. Aggregates were found in the high-turbulence level zones. The isokinetic sampling probe and the isokinetic borescope provide new methods for flotation tank tests. An experiment was also set up to study the dynamics of bubble particle impact. Four different modes were found for the collision. The criterion is that if the fluid drainage time is less than the residence time, the attachment will occur, otherwise, the particle will bounce back. / Ph. D.
52

A Multi-Phase Suzaku Study of τ Sco.

Ignace, Richard, Oskinova, L., Jardine, M., Cassinelli, J., Cohen, D., Donati, J.-F., Townsend, R., ud-Doula, A. 01 October 2010 (has links) (PDF)
We obtained relatively high signal-to-noise X-ray spectral data of the early massive star τ Sco (B0.2V) with the Suzaku X-ray Imaging Spectrometer (XIS) instrument. This source displays several unusual features that motivated our study: (1) redshifted absorption in UV P Cygni lines to approximately +250 km s−1 suggestive of infalling gas, (2) unusually hard X-ray emission requiring hot plasma at temperatures in excess of 10 MK whereas most massive stars show relatively soft X-rays at a few MK, and (3) a complex photospheric magnetic field of open and closed field lines. In an attempt to understand the hard component better, X-ray data were obtained at six roughly equally spaced phases within the same epoch of τ Sco’s 41 day rotation period. The XIS instrument has three operable detectors: XIS1 is back-illuminated with sensitivity down to 0.2 keV; XIS0 and XIS2 are front-illuminated with sensitivity only down to 0.4 keV and have an overall less effective area than XIS1. The XIS0 and XIS3 detectors show relatively little variability. In contrast, there is a ≈4σ detection of a ≈4% drop in the count rate of the XIS1 detector at one rotational phase. In addition, all three detectors show a ≈3% increase in count rate at the same phase. The most optimistic prediction of X-ray variability allows for a 40% change in the count rate, particularly near phases where we have pointings. Observed modulations in the X-ray light curve on the rotation cycle is an order of magnitude smaller than this, which places new stringent constraints on future modeling of this interesting magnetic massive star.
53

In Vivo and In Vitro Application of Elastin-Like Polypetides

Ge, Xin 05 1900 (has links)
Elastin-like polypeptides (ELP) are artificially designed protein biopolymers that can be produced by living organisms. These proteins have the unique ability to undergo reversible inverse phase transition, in response to changes in temperature and/or addition of chaotropic salts. Below the transition temperature (T1) , ELP is soluble in water. Increasing the temperature above Ti, ELP coacervates into an aqeous ELP-rich phase. In this thesis, this unique feature of ELP was used in for recombinant protein purification and for the formation of aqueous multiple-phase systems. For protein purification, ELP was fused with an intein and a model protein (thioredoxin), to demonstrate a simple and inexpensive approach for recombinant protein purification. The ELP tags replace the chromatographic media and the intein replaces the use of the protease in conventional methods. Using ELP tags was found to be consistent with large -scale recombinant protein production/purification by purifying an ELP tagged protein using a stirred cell equipped with a microfiltration membrane. When the temperature and/or salt concer.tration is increased for mixtures containing free ELP and ELP tagged proteins, simultaneous phase transition takes place. This served as the basis for the development of a method suitable for selectively recovering molecules from complex mixtures with high specificity, full reversibility, and virtually unlimited affinity. The second parts of this thesis focus on the ability of ELP to form aqueous twophase systems (A TPS) in vitro and most importantly, in vivo- with the formation of aqueous microcompartments in living cells. These compartments exclude the protein making machinery of the cell, acting as depots for newly expressed protein. It is also shown (in vitro) that ELP bastd droplets exclude proteases, protecting proteins from degradation. These observations are important for high-level production of recombinant proteins. Also described, is the formation of protein based aqueous multiphasic systems, with tunable morphologies. / Thesis / Doctor of Philosophy (PhD)
54

Multi-Phase Subspace Identification Formulations for Batch Processes With Applications to Rotational Moulding / Multi-Phase Batch SSID With Applications to Rotomoulding

Ubene, Evan January 2023 (has links)
A formulation of a subspace identification method for multi-phase processes with applications to rotational moulding and suggestions for improvements and experimental applications. / This thesis focuses on the implementation of subspace identification (SSID) for nonlinear, chemical batch processes by introducing a model identification method for multi-phase processes. In this thesis, a multi-phase process refers to chemical or biological batch-like processes with properties that cause a change in the dynamics during the evolution of the process. This can occur, for example, when a process undergoes a change of state upon reaching a melting point. Existing SSID techniques are not designed to utilize any known, multiphase nature of a process in the model identification stage. The proposed approach, Multiphase Subspace Identification (MPSSID), is conducted by first splitting historical data into phases during the identification step and then building a subspace model for each phase. The phases are then connected via a partial least squares (PLS) model that transforms the states from one phase to the next. This approach makes use of existing SSID techniques that allow for model construction using batches of nonunifrom length. Here, MPSSID is applied to a uniaxial rotational moulding process. In rotational moulding, the dynamics switch as the process undergoes heating, melting, and sintering stages that are visibly distinct and recognizable upon a certain temperature (not time) being reached. Results demonstrate the ability of multiphase models to better predict the temperature trajectories and final product quality of validation batches. As an extension to this rotational moulding analysis, additional MPSSID methods of implementation are proposed and the results are compared. A MPSSID mixed integer linear program is then introduced for implementation within model predictive control. The applications to rotational moulding are presented within the context of plastics manufacturing and the impact of plastic on the global climate crisis, with suggestions for future work. / Thesis / Master of Applied Science (MASc) / The control of chemical processes is an important factor in achieving high quality products. To control a process well, the mathematical model of the system must be accurate. In the past, mathematical models for process control were designed based on engineering approximations. Now, with major advances in computing and sensor technology, it is possible to design a simulation of the entire process. These simulations can be designed using first-principles or black box approaches. First-principles approaches utilize rigorous models that are based on the complex chemical and physical formulas that govern a system. Black box approaches do not look at the first-principles dynamics. They only utilize the measured process inputs and outputs to form a model of the system. They are widely used because of their ease of implementation in comparison to first-principles approaches. In this thesis, a new black box process control model is proposed and is found to yield better theoretical results than existing techniques. This model is tested on data from a plastics manufacturing process called rotational moulding, which involves loading polymer powders into a mould that is simultaneously rotated and heated to yield seamless plastic parts. Lastly, a control framework that is compatible with the new black box model is proposed to be used for future experimental tests.
55

A Parametric Investigation of Gas Bubble Growth and Pinch-Off Dynamics from Capillary-Tube Orifices in Liquid Pools

Kalaikadal, Deepak Saagar 08 October 2012 (has links)
No description available.
56

An Experimental Study of Fibre SuspensionFlows in Pipes using Nuclear MagneticResonance Imaging

Hirota, Masato January 2013 (has links)
This study deals with fibre suspension flows through cylindrical pipes. Thepresent work aims at measurements of opaque flows, which are common inindustries. Nuclear magnetic resonance imaging (NMRI) and ultrasound velocimetryprofiling (UVP) were employed as non-invasive and optic-independenttools to measure the velocity profiles. As a first experiment, a paper-pulp suspensionflow through a sudden contraction and expansion was investigated.The results show the NMRI technique can be used to measure the stronglyunsteady flow such as separated regions though the MR signal is attenuateddue to the turbulence in the flow. The flow loop had however an insufficientinlet length which caused asymmetric profiles at the test section. As a secondexperiment, a flow loop which provided fully developed flows at the test sectionwas designed. After that, the velocity profiles of rayon-fibre and micro-spheresuspension flows were measured by the NMRI and the UVP independently.In principle, these two techniques measure the different velocities of the fibresuspensionflows, i.e. the velocity of the water and the fibre. In dilute suspensionflows, where the velocities of the two phases were assumed to be thesame, the velocity profiles were in good agreement. This shows the validityof the two measurement techniques. However, it should be pointed out thatthere is a limitation of the current UVP method for highly concentrated flows.The velocity profiles obtained by the UVP at high concentrations seems notto represent physics while the NMRI is not affected by the concentrations. Itis argued that the advances of the NMRI for the measurement of the highlyconcentrated flows.
57

Quantitative Multi-Phase Field Modeling of Polycrystalline Solidification in Binary Alloys

Ofori-Opoku, Nana 04 1900 (has links)
This thesis develops a new quantitative multi-phase field model for polycrystalline solidification of binary alloys. We extend the thin interface formalism of Karma and co-workers to multiple order parameters. This makes it possible to model segregation and interface kinetics during equiaxed dendritic growth quantitatively, a feature presently lacking from polycrystalline or multi-phase solidification models. We study dendrite tip speed convergence as a function of interface width during free dendritic growth. We then analyze the steady state and grain coalescence properties of the model. It is shown that the model captures the correct physics of back diffusion and repulsive grain boundary coalescence as outlined by Rappaz and co-workers. Finally, the model is applied to simulate solidification and coarsening in delta-ferrite solidification. / Thesis / Master of Applied Science (MASc)
58

A Novel High-Power High-Efficiency Three-Phase Phase-Shift DC/DC Converter for Fuel Cell Applications

Liu, Changrong 28 January 2005 (has links)
Fuel cells are a clean, high-efficiency source for power generation. This innovative technology is going to penetrate all aspects in our life, from utility distributed power, transportation applications, down to power sources for portable devices such as laptop computer and cell phones. To enable the usage of fuel cell, developing power converters dedicated for fuel cells becomes imminent. Currently, the full-bridge converter is the dominating topology in high power dc/dc applications. Although multiphase converters have been proposed, most of them are dealing with high input-voltage systems, and their device characteristic is not suitable for a low voltage source such as a fuel cell. For a high power fuel cell system, high voltage conversion ratios and high input currents are the major obstacles to achieving high-efficiency power conversions. This dissertation proposes a novel 3-phase 6-leg dc/dc power converter with transformer isolation to overcome these obstacles. Major features of the proposed converter include: (1) Increase converter power rating by paralleling phases, not by paralleling multiple devices; (2) Double the output voltage by transformer delta-wye connection, thus lowering the turns-ratio; (3) Reduce the size of output filter and input dc bus capacitor with interleaved control; (4) Achieve Zero-Voltage Zero-Current Switching (ZVZCS) over a wide load range without auxiliary circuitry. High conversion efficiency above 96% is verified with different measurement approaches in experiments. This dissertation also presents the power stage and control design for the proposed converter. Control design guideline is provided and the design result is confirmed with both simulation and hardware experiments. When using the fuel cell for stationary utility power applications, a low-frequency ripple interaction was identified among fuel cell, dc/dc converter and dc/ac inverter. This low frequency ripple tends to not only damage the fuel cell, but also reduce the source capability. This dissertation also investigates the mechanism of ripple current propagation and exploits the solutions. A linearized ac model is derived and used to explain the ripple propagation. An active ripple reduction technique by the use of the current loop control is proposed. This active current loop control does not add extra converters or expensive energy storage components. Rather, it allows a reduction in capacitance because the ripple current flowing into the capacitor is substantially reduced, and less capacitance can be used while maintaining a clean dc bus voltage. The design process and guideline for the proposed control is suggested, and the effectiveness of this active control is validated by both simulation and experimental results. / Ph. D.
59

Large-Eddy Simulations of Hydrocyclones

Bukhari, Mustafa Mohammedamin T. 20 January 2023 (has links)
This dissertation investigates the flow physics, turbulence structure, and particle classification process in hydrocyclones using large-eddy simulations of turbulent multiphase flow. Two types of hydrocyclones are considered. The first is a classifying hydrocyclone, and the second is a mineral flotation hydrocyclone, also known as an air-sparged hydrocyclone (ASH). Large-eddy simulations (LES) are conducted for multi-phase flow (air, water, and sand particles) so that the complex anisotropic turbulence of a swirling flow is computed correctly. The effects of mesh refinements on the mean flow and turbulence stresses are investigated, and (LES) results are validated by comparisons with experimental data for classifying hydrocyclone. The two-phase flow in air-sparged hydrocyclone has not been analyzed before. ANSYS CFX software V17.2 has been used to conduct the simulations. Firstly, large-eddy simulations have been conducted for two-phase flow (water and air) in a conventional hydrocyclone using the Eulerian two-fluid (Eulerian-Eulerian) and Volume-of- Fluid (VOF) models. Subgrid stresses are modeled using a dynamic eddy–viscosity model, and results are compared to those using the Smagorinsky model. The effects of grid resolutions on the mean flow and turbulence statistics have been thoroughly investigated. Five block-structured grids of 0.72, 1.47, 2.4, 3.81, and 7.38 million elements have been used for the simulations of a typical conventional hydrocyclone designed and tested by Hsieh (75 mm hydrocyclone) [1]. Mean velocity profiles and normal Reynolds stresses have been compared with experimental data. The results of the Eulerian two-fluid model agree with those of the VOF model. A fine mesh in the axial and radial directions is necessary for capturing the turbulent vortical structures. Turbulence structures in the hydrocyclone are dominated by helical vortices around the air core. Energy spectra are analyzed at different points in the hydrocyclone, and regions of low turbulent kinetic energy are identified and attributed to stabilizing effects of the swirling velocity component. Turbulent energy spectra in the different regions of the hydrocyclone have been analyzed. The energy spectra are calculated at two points near the air-water interface. They show a short inertial subrange where energy decays as f−5/3, followed by viscous damping where energy drops as f−7, where f is frequency. However, for the points located near the boundary where high turbulent kinetic energy is found, the energy spectra exhibit f^(−4) decay. Secondly, the two-fluid (Eulerian two-fluid) model and large-eddy simulation are used to compute the turbulent two-phase flow of air and water in a cyclonic flotation device known as an Air-Sparged Hydrocyclone (ASH). In the operation of ASH, the air is injected through a porous cylindrical wall. The study considers a 48-mm diameter hydrocyclone and uses a block-structured fine mesh of 10.5 million hexahedral elements. The air-to-water injection ratio is 4, and a uniform air bubble diameter of 0.5 mm has been specified. The flow field in ASH has been investigated for the inlet flow rate of water of 30.6 L/min at different values of underflow exit pressure. The present simulations show that the value of static pressure imposed at the underflow section strongly affects the distribution of air volume fraction, water axial velocity, tangential velocity, and swirling layer thickness in ASH. The loci of zero-axial velocity surfaces have been determined for different exit pressures. The water split ratio through the overflow opening varies with underflow exit pressure as 6%, 8%, 16%, and 26% for 3, 4, 5, and 6 kPa, respectively. These results indicate that regulating the pressure at the underflow exit can be used to optimize ASH's performance. Turbulent energy spectra in different regions of the hydrocyclone have been analyzed. Small-scale turbulence spectra at near-wall points exhibit f^(−4) law, where f is frequency. Whereas for points at the air-column interface, the energy spectra show an inertial subrange f^(−5/3) followed by a dissipative range of f^(−7) law. Thirdly, large-eddy simulation (LES) has been used to investigate the flow separation in multi-phase flow (gas, liquid, and solid) in a classifying hydrocyclone using the multi-fluid (Eulerian multi-fluid) model. The results of the CFD simulation are compared with the Hsieh [1] experimental data. The water phase is considered a continuous phase, while air and solid particles are considered dispersed phases. Drag between water-air and water-sand is the only considered interfacial force. The Schiller-Naumann and Wen-Yu models are used to model the drag, and the Gidaspow model is used to calculate the solid pressure term. Various particle sizes are tested in the hydrocyclone to investigate the underflow recovery percentages. The results agree with the experimental data for the particles of a diameter smaller than 20 μm, while the results vary based on the model for the large particles. Therefore, using the Wen Yu and Schiller-Naumann model for the drag model and the Gidaspow model for the solid pressure in the three-fluid model could give acceptable results for the small particles underflow recovery and volume fraction distribution. However, the models failed for large particles. Finally, the large particle size separation needs more investigation. / Doctor of Philosophy / Hydrocyclones are widely used in mining and chemical industries. They can be used as separation devices to separate solid or fluid particles based on their size or/and weight. They can also be used as flotation devices to capture certain mineral particles from a slurry of water and solid particles. The flow field within a hydrocyclone is complex as it involves flow of different phases of matter (liquid, gas, and solid). It is also a turbulent flow in which the velocity and pressure fluctuate in time with many frequencies. The efficiency of the hydrocyclone depends on its geometry and distribution of the velocity. Computer simulations are very efficient tools to predict and study the flow field in hydrocyclones. This dissertation used a computer simulations to explain how turbulence could affect the particle separation from the slurry inside the hydrocyclones. The water's velocity fields, swirling flow, air behavior, pressure distribution and turbulence statistics are analysed. Understanding the turbulence structure and statistics in hydrocyclones is important for particle tracking and dispersion. Also, turbulent structure affects the motion of the air bubbles and solid particles in the flow field, which eventually will affect the hydrocyclone's performance. In short, a more comprehensive understanding of the behavior of turbulence of hydrocyclones represents an important tool that can guide the design of hydrocyclones according to their use goals and will help engineers who model these processes to develop a better model.
60

Development and validation of a computational model for a proton exchange membrane fuel cell

Siegel, Nathan Phillip 17 February 2004 (has links)
A steady-state computational model for a proton exchange membrane fuel cell (PEMFC) is presented. The model accounts for species transport, electrochemical kinetics, energy transport, current distribution, water uptake and release within the polymer portion of the catalyst layers, and liquid water production and transport. Both two-dimensional and three-dimensional geometries are modeled. For a given geometry, the governing differential equations are solved over a single computational domain. For the two-dimensional model, the solution domain includes a gas channel, gas diffusion layer, and catalyst layer for both the anode and cathode sides of the cell as well as the solid polymer membrane. For the three-dimensional model the current collectors are also modeled on both the anode and cathode sides of the fuel cell. The model for the catalyst layers is based on an agglomerate geometry, which requires water species to exist in dissolved, gaseous, and liquid forms simultaneously. Data related to catalyst layer morphology that was required by the model was obtained via a physical analysis of both commercially available and in-house membrane electrode assemblies (MEA). Analysis techniques including cyclic voltammetry and electron microscopy were used. The coupled set of partial differential equations is solved sequentially over a single solution domain with the commercial computational fluid dynamics (CFD) solver, CFDesign™ and is readily adaptable with respect to geometry and material property definitions. A fuel cell test stand was designed and built to facilitate experimental validation of the model. The test stand is capable of testing cells up to 50 cm2 under a variety of controlled conditions. Model results for both two and three-dimensional fuel cell geometries are presented. Parametric studies performed with the model are also presented and illustrate how fuel cell performance varies due to changes in parameters associated with the transport of reactants and liquid water produced in the cell. In particular, the transport of oxygen, water within the polymer portions of the catalyst layers and membrane, and liquid water within the porous regions of the cell are shown to have significant impact on cell performance, especially at low cell voltage. Parametric studies also address the sensitivity of the model results to certain physical properties, which illustrates the importance of accurately determining the physical properties of the fuel cell components on which the model is based. The results from the three-dimensional model illustrate the impact of the collector plate shoulders (for a conventional flowfield) on oxygen transport and the distribution of current production within the cell. / Ph. D.

Page generated in 0.0986 seconds