Spelling suggestions: "subject:"multicriteria optimization"" "subject:"multicriterio optimization""
1 |
Modélisation et optimisation des inondations urbaines avec une approche multicritères / Modeling and optimization of urban flooding with a multicriteria approachRezoug, Mehdi 22 October 2012 (has links)
Le risque d’inondations dans les zones urbaines a considérablement augmenté au cours des dernières décennies avec la croissance rapide de la population et le processus d’urbanisation à proximité des cours d’eau et des zones inondables. Afin de faire face à ce risque, différents acteurs se réunissent dans le but de proposer une solution d’aménagement du territoire, capable de le maîtriser au mieux. La solution proposée doit répondre à plusieurs objectifs de natures différentes (économiques, sociaux, politiques,…) qui sont le plus souvent contradictoires. Des outils numériques d’aide à la décision sont actuellement disponibles et fréquemment utilisés par les aménageurs pour les aider dans leurs choix d’une solution adéquate. Cependant ces outils se basent généralement sur des approches empiriques et l’efficacité des solutions proposées reste incertaine. Dans ce contexte, l’objectif des travaux réalisés au cours de cette thèse, consiste à développer une approche complémentaire aux outils d’aide à la décision en se basant principalement sur des méthodes numériques directes, telles que la modélisation 3D, la simulation numérique et l’optimisation multicritères. L’approche consiste dans un premier temps à coupler la modélisation géométrique 3D issue de Système d’Information Géographique « SIG » avec la modélisation en mécanique des fluides « CFD », afin de représenter le phénomène d’inondation urbaine avec une précision proche du réel. Cette étape permet de fournir une cartographie tridimensionnelle de différentes caractéristiques de l’inondation (Vitesses, Hauteur d’eau, étendue de l’inondation, …), et par conséquent localiser les différentes parties de la ville à aménager en priorité. Dans un second temps, en se basant sur les résultats obtenus dans la première partie, des stratégies d'optimisation multicritères sont mises en œuvre afin de trouver parmi une multitude de solutions proposées, représentant des projets d’aménagement, celle la plus convenable pour la situation étudiée, et qui satisfasse simultanément les différentes contraintes techniques, économiques et environnementales. Une telle approche permet aux décideurs à la fois d’accélérer leur procédure d’analyse du risque dans la zone urbaine et de les rassurer sur l’efficacité de la solution choisie face à ce risque. / The risk and impact of floods in urban areas has been increased in the last few decades as population and urbanization processes rapidly increase and subsequently more and more people and properties are being concentrated in flood-prone coastal zones and river flood-plains. To cope with this risk, different stakeholders meet in order to provide a land planning solution able of better managing the risk. The proposed solution must meet different kinds of objectives simultaneously (geographical, economic, social, political,...). These ones are often contradictory. Digital tools for decision support are currently available and commonly used by developers to help them in their choice of an appropriate solution. However, these tools are usually based on empirical approaches and the effectiveness of the proposed solutions is uncertain. In this context, the principal objective of this research working is to develop a complementary numerical approach to the tools of decision support based primarily on direct numerical methods, such as 3D modeling, numerical simulation and multi-criteria optimization. As a first step, the proposed approach consists to couple the geometric modeling, based on 3D data of GIS (Geographic Information System) , with the CFD modeling (Computational fluid dynamics) in order to represent the urban flooding scenario with an accuracy close to the actual . This step will provide a three-dimensional mapping of the different characteristics of the flood (velocity and height of water, the flood extent ...). Thus we can easily and quickly locate different parts of the city that will be developed in priority. As a second step, based on the results obtained in the first step, some advanced strategies of the multi-criteria optimization are implemented to find among a multitude of proposed solutions, representing the most suitable development projects for the situation studied, and meets the various technical, economic and environmental constraints. Such approach allows decision makers to both accelerate their process of risk analysis, in the urban area, and reassure the effectiveness of the chosen solution against this risk.
|
2 |
Schemas of ClusteringTadepalli, Sriram Satish 12 March 2009 (has links)
Data mining techniques, such as clustering, have become a mainstay in many applications such as bioinformatics, geographic information systems, and marketing. Over the last decade, due to new demands posed by these applications, clustering techniques have been significantly adapted and extended. One such extension is the idea of finding clusters in a dataset that preserve information about some auxiliary variable. These approaches tend to guide the clustering algorithms that are traditionally unsupervised learning techniques with the background knowledge of the auxiliary variable. The auxiliary information could be some prior class label attached to the data samples or it could be the relations between data samples across different datasets. In this dissertation, we consider the latter problem of simultaneously clustering several vector valued datasets by taking into account the relationships between the data samples.
We formulate objective functions that can be used to find clusters that are local in each individual dataset and at the same time maximally similar or dissimilar with respect to clusters across datasets. We introduce diverse applications of these clustering algorithms: (1) time series segmentation (2) reconstructing temporal models from time series segmentations (3) simultaneously clustering several datasets according to database schemas using a multi-criteria optimization and (4) clustering datasets with many-many relationships between data samples.
For each of the above, we demonstrate applications, including modeling the yeast cell cycle and the yeast metabolic cycle, understanding the temporal relationships between yeast biological processes, and cross-genomic studies involving multiple organisms and multiple stresses. The key contribution is to structure the design of complex clustering algorithms over a database schema in terms of clustering algorithms over the underlying entity sets. / Ph. D.
|
3 |
Systematic ensemble learning and extensions for regression / Méthodes d'ensemble systématiques et extensions en apprentissage automatique pour la régressionAldave, Roberto January 2015 (has links)
Abstract : The objective is to provide methods to improve the performance, or prediction accuracy of standard stacking approach, which is an ensemble method composed of simple, heterogeneous base models, through the integration of the diversity generation, combination and/or selection stages for regression problems. In Chapter 1, we propose to combine a set of level-1 learners into a level-2 learner, or ensemble. We also propose to inject a diversity generation mechanism into the initial cross-validation partition, from which new cross-validation partitions are generated, and sub-sequent ensembles are trained. Then, we propose an algorithm to select best partition, or corresponding ensemble. In Chapter 2, we formulate the partition selection as a Pareto-based multi-criteria optimization problem, as well as an algorithm to make the partition selection iterative with the aim to improve more the ensemble prediction accuracy. In Chapter 3, we propose to generate multiple populations or partitions by injecting a diversity mechanism to the original dataset. Then, an algorithm is proposed to select the best partition among all partitions generated by the multiple populations. All methods designed and implemented in this thesis get encouraging, and favorably results across different dataset against both state-of-the-art models, and ensembles for regression. / Résumé : L’objectif est de fournir des techniques permettant d’améliorer la performance de l’algorithme de stacking, une méthode ensembliste composée de modèles de base simples et hétérogènes, à travers l’intégration de la génération de la diversité, la sélection
et combinaison des modèles. Dans le chapitre 1, nous proposons de combiner différents sous-ensembles de modèles de base obtenus au primer niveau. Nous proposons
un mécanisme pour injecter de la diversité dans la partition croisée initiale, à partir de laquelle de nouvelles partitions de validation croisée sont générées, et les ensembles correspondant sont formés. Ensuite, nous proposons un algorithme pour sélectionner la meilleure partition. Dans le chapitre 2, nous formulons la sélection de la partition comme un problème d’optimisation multi-objectif fondé sur un principe de Pareto, ainsi que d’un algorithme pour faire une application itérative de la sélection avec l’objectif d’améliorer d’avantage la précision d’ensemble. Dans le chapitre 3, nous proposons de générer plusieurs populations en injectant un mécanisme de diversité à l’ensemble de données original. Ensuite, un algorithme est proposé pour sélectionner la meilleur partition entre toutes les partitions produite par les multiples populations. Nous avons obtenu des résultats encourageants avec ces algorithmes lors de comparaisons avec des modèles reconnus sur plusieurs bases de données.
|
4 |
Trip quality in peer-to-peer shared ride systemsGuan, Lin-Jie Unknown Date (has links) (PDF)
In a peer-to-peer shared ride system, transportation clients with traffic demand negotiate with transportation hosts offering shared ride services for ad-hoc ridesharing in a continuously changing environment, using wireless geosensor networks. Due to the distinctive characteristic of this system—a complex and non-deterministic transportation network, and a local peer-to-peer communication strategy—clients will always have limited transportation knowledge, both from a spatial and a temporal perspective. Clients hear only from nearby hosts, and they do not know the future availability of current or new hosts. Clients can plan optimal trips prior to departure according to their current knowledge, but it is unlikely that these trips will be final optimal trip due to continuously changing traffic conditions. Therefore, it is necessary to evaluate the trip quality in this dynamic environment in order to assess different communication and wayfinding strategies. (For complete abstract open document)
|
5 |
Further Applications of Reactive In-Mold Coating (IMC): Effect of Inhibitor and Carbon Nano-ParticlesBHUYAN, MOHAMMAD SHAHAJAHAN KABIR 25 October 2018 (has links)
No description available.
|
6 |
A Decision Support System for the Electrical Power Districting ProblemBergey, Paul K. 28 April 2000 (has links)
Due to a variety of political, economic, and technological factors, many national electricity industries around the globe are transforming from non-competitive monopolies with centralized systems to decentralized operations with competitive business units. This process, commonly referred to as deregulation (or liberalization) is driven by the belief that a monopolistic industry fails to achieve economic efficiency for consumers over the long run. Deregulation has occurred in a number of industries such as: aviation, natural gas, transportation, and telecommunications. The most recent movement involving the deregulation of the electricity marketplace is expected to yield consumer benefit as well.
To facilitate deregulation of the electricity marketplace, competitive business units must be established to manage various functions and services independently. In addition, these business units must be given physical property rights for certain parts of the transmission and distribution network in order to provide reliable service and make effective business decisions. However, partitioning a physical power grid into economically viable districts involves many considerations. We refer to this complex problem as the electrical power districting problem.
This research is intended to identify the necessary and fundamental characteristics to appropriately model and solve an electrical power districting problem. Specifically, the objectives of this research are five-fold. First, to identify the issues relevant to electrical power districting problems. Second, to investigate the similarities and differences of electrical power districting problems with other districting problems published in the research literature. Third, to develop and recommend an appropriate solution methodology for electrical power districting problems. Fourth, to demonstrate the effectiveness of the proposed solution method for a specific case of electric power districting in the Republic of Ghana, with data provided by the World Bank. Finally, to develop a decision support system for the decision makers at the World Bank for solving Ghana's electrical power districting problem. / Ph. D.
|
7 |
Ελάχιστα γεννητικά δένδρα με πολλαπλά κριτήρια / Multi-criteria minimum spanning treesΣταθοπούλου, Ευθυμία 16 May 2007 (has links)
Η εύρεση γεννητικών δέντρων ελάχιστου-κόστους αποτελεί ένα κλασικό επιστημονικό πρόβλημα με σημαντικές εφαρμογές στη σχεδίαση δικτύων. Δοθέντος ενός γραφήματος, όπου κάθε πλευρά σχετίζεται με ένα βάρος (κριτήριο) το πρόβλημα της εύρεσης ενός Ελάχιστου Γεννητικού Δέντρου ανέρχεται στο πρόβλημα της εύρεσης ενός γεννητικού δέντρου με το ελάχιστο συνολικό κόστος. Το πρόβλημα ΕΓΔ έχει αποτελέσει αντικείμενο ενδιαφέροντος πολλών μελετητών με αποτέλεσμα την ανάπτυξη αλγορίθμων πολυωνυμικού-χρόνου, όπως είναι ο αλγόριθμος του Prim, του Sollin και του Kruskal. Στον πραγματικό κόσμο όμως υπάρχουν περιπτώσεις όπου πρέπει να λάβουμε ταυτόχρονα υπόψη πολλά κριτήρια προκειμένου να καθορίσουμε ένα ΕΓΔ. Αυτό συμβαίνει γιατί κάθε πλευρά του γραφήματος σχετίζεται με παραπάνω από ένα κόστη. Για παράδειγμα, στη σχεδίαση ενός τηλεπικοινωνιακού δικτύου, πέρα από το κόστος κατασκευής των συνδέσεων μεταξύ των πόλεων ή των τερματικών μας ενδιαφέρουν και άλλοι παράγοντες. Ο χρόνος που απαιτείται για την κατασκευή, η δυσκολία και πολυπλοκότητα της κατασκευής, η καθυστέρηση μετάδοσης της πληροφορίας αλλά και η αξιοπιστία του συστήματος αποτελούν σημαντικούς παράγοντες που πρέπει να ληφθούν υπόψη στην σχεδίαση του δικτύου. Αλλά και στην καθημερινή ζωή, πολλές φορές χρειάζεται να ληφθούν σημαντικές αποφάσεις οι οποίες εξαρτώνται από περισσότερα από ένα κριτήρια. Παραδείγματος χάριν, άνθρωποι που ταξιδεύουν θέλουν να βελτιστοποιήσουν τη διανυόμενη απόσταση, το κόστος, και το χρόνο μετακίνησης. Το ζητούμενο είναι πως μπορεί να οδηγηθεί κανείς στη λήψη μιας βέλτιστης για αυτόν απόφασης, που κάτω από δεδομένες συνθήκες μπορεί να είναι περισσότερες από μία. Δηλαδή, δεν οδηγούμαστε σε μία μοναδική βέλτιστη λύση αλλά σε ένα σύνολο από «βέλτιστες» λύσεις και ο ενδιαφερόμενος, ανάλογα με τα ιδιαίτερα χαρακτηριστικά του προβλήματος, κάνει την τελική επιλογή. Το πρόβλημα ΕΓΔ, στο οποίο ζητείται η ελαχιστοποίηση περισσοτέρων του ενός κριτηρίων είναι γνωστό ως το πρόβλημα ΕΓΔ πολλαπλών κριτηρίων (multi-criteria minimum spanning tree problem). Η συνεισφορά της παρούσας διπλωματικής λοιπόν αποτελείται από δύο μέρη: Το πρώτο, εστιάζεται στην κριτική επισκόπηση και περιγραφή των υπαρχόντων μεθόδων επίλυσης του προβλήματος ΕΓΔ δύο κριτηρίων. Το δεύτερο, αφορά την υλοποίηση και πειραματική αξιολόγηση δύο βασικών αλγορίθμων για την επίλυση του εν λόγω προβλήματος. Συγκεκριμένα, υλοποιήθηκε η τροποποιημένη εκδοχή (για το πρόβλημα ΕΓΔ πολλαπλών κριτηρίων) του αλγορίθμου του Prim καθώς και μία προσεγγιστική μέθοδος επίλυσης του προβλήματος ΕΓΔ πολλαπλών κριτηρίων. / The minimum spanning tree problem (MST) is of high importance in network optimization. Given a connected graph G where each edge has a weight, the goal is to find the spanning tree with the least cost among all spanning trees of G. Due to its many practical applications, the MST problem has been studied in depth and many efficient polynomial-time algorithms have been developed by Sollin, Kruskal, Prim etc. But in real life, there cases where one has to take simultaneously into consideration many criteria in order to determine a MST because there are multiple weights defined on each edge of the graph. For example, when designing the layout of a telecommunication network, besides the cost for connections between cities or terminals we are interested in other factors too. The time for communication and construction, the difficulty of the construction or the reliability of the system are also important factors and need to be taken into consideration. But also in everyday life, in many cases we need to take decisions that depend on multiple criteria. For instance, people who travel want to minimize simultaneously the cost, the distance and the time. The problem is that in these cases there is not only one optimal solution but rather a set of optimal solutions and the decision maker depending on the characteristics of each case will make the final call. The MST problem in which we want to minimize more than one criteria is known as the multi-criteria minimum spanning tree problem. The contribution of this thesis is composed of two parts. The first part focuses on the critical survey and description of various methods for solving the bi-criteria case of the MST problem. The other part focuses on the implementation and the experimental evaluation of two known and important algorithms. More precisely, we have implemented the modified version of the Prim’s algorithm (for the multi-criteria MST problem) and one approximate algorithm as proposed by Hamacher & Ruhe.
|
8 |
Multi-criteria analysis in naval ship designAnil, Kivanc A. 03 1900 (has links)
Approved for public release, distribution is unlimited / Numerous optimization problems involve systems with multiple and often contradictory criteria. Such contradictory criteria have been an issue for marine/naval engineering design studies for many years. This problem becomes more important when one considers novel ship types with very limited or no operational record. A number of approaches have been proposed to overcome these multiple criteria design optimization problems. This Thesis follows the Parameter Space Investigation (PSI) technique to address these problems. The PSI method is implemented with a software package called MOVI (Multi-criteria Optimization and Vector Identification). Two marine/naval engineering design optimization models were investigated using the PSI technique along with the MOVI software. The first example was a bulk carrier design model which was previously studied with other optimization methods. This model, which was selected due to its relatively small dimensionality and the availability of existing studies, was utilized in order to demonstrate and validate the features of the proposed approach. A more realistic example was based on the "MIT Functional Ship Design Synthesis Model" with a greater number of parameters, criteria, and functional constraints. A series of optimization studies conducted for this model demonstrated that the proposed approach can be implemented in a naval ship design environment and can lead to a large design parameter space exploration with minimum computational effort. / Lieutenant Junior Grade, Turkish Navy
|
9 |
Étude de l'aide à la décision par optimisation multicritère des programmes de réhabilitation énergétique séquentielle des bâtiments existants / Study of decision aiding through multi criteria optimization for existing buildings holistic energy retrofitRivallain, Mathieu 21 January 2013 (has links)
Sous nos latitudes, l’usage des bâtiments existants et les consommations énergétiques associées (chauffage, climatisation, ventilation, eau chaude sanitaire, éclairage et autres usages) sont responsables d’impacts considérables sur l’Environnement. De plus, le renouvellement du parc existant étant inférieur à 1% par an, dans la plupart des pays développés, la réhabilitation des bâtiments constitue un levier majeur de réduction des consommations d’énergie et des émissions de gaz à effet de serre. Cependant, l’identification de stratégies optimales de réhabilitation énergétique, incluant la planification des actions dans le temps, demeure une problématique complexe pour les acteurs de la Construction. Ces travaux de thèse visent à produire des connaissances afin de contribuer à l’aide à la décision pour l’identification de programmes efficaces de réhabilitation énergétique, à partir de méthodes d’optimisation multicritères. Les solutions (programmes séquentiels de réhabilitation énergétique) sont optimisées en termes de composition et de phasage. La composition est définie par la combinaison de mesures de réhabilitation mise en oeuvre. Celles-ci concernent l’enveloppe des bâtiments (isolation thermique, remplacement des fenêtres, surfaces de fenêtres) et le remplacement des équipements de chauffage, ventilation et production d’ECS. Pour chacune des mesures, plusieurs alternatives sont envisagées. Le phasage correspond à la permutation de ces mesures, définissant la séquence de mise en oeuvre. Les solutions sont évaluées sur une base multicritère et sur le cycle de vie. Les fonctions objectifs ciblent les impacts environnementaux de l’ACV (Analyse de Cycle de Vie), des indicateurs économiques, le bien-être des occupants par le confort thermique adaptatif en été. Des modèles d’ACV et d’analyse du coût du cycle de vie, utilisant la simulation thermique dynamique pour le calcul des besoins de chauffage et des températures intérieures, ont été développés pour l’évaluation des performances des solutions. Etant donnée la nature mathématique du problème (multicritère, combinatoire, à variables discrètes et à fonctions objectifs implicites non-linéaires), deux méthodes d’optimisation multicritères sont étudiées : les algorithmes génétiques (NSGA II) et la programmation dynamique. Dans l’approche génétique, la modélisation des solutions, sous la forme d’un couple de chromosomes, permet d’identifier des programmes séquentiels efficaces de réhabilitation énergétique et d’analyser les surfaces de compromis, en termes de définition et performances des solutions, de compromis entre les critères de décision. A partir de la représentation du problème par un graphe séquentiel, la programmation dynamique permet alors de comparer les solutions approchées issues de l’algorithme génétique, ou d’approches court-termistes, au front de Pareto exact. L’optimisation exacte a également été exploitée pour analyser la sensibilité des solutions à différents paramètres de modélisation dont le comportement des occupants, l’évolution des prix de l’énergie, la durée de vie des composants de réhabilitation. Les contraintes budgétaires s’appliquant au projet de réhabilitation ont été ensuite intégrées dans un algorithme génétique multicritère sous contraintes, adapté à l’étude des stratégies de réhabilitation sous la contrainte d’un plan de financement. Enfin, l’approche génétique a été étendue depuis l’échelle du bâtiment à celle du par cet l’optimisation exacte a été utilisée pour caractériser les typologies de bâtiment en réhabilitation. L’intérêt des différentes méthodes est illustré sur une étude de cas (…) / Under our latitudes, existing buildings energy consumptions, related to heating, cooling, ventilation, domestic hot water (DHW), lighting and other uses, are responsible for significant environmental burdens. Moreover, existing buildings annual replacement rate being lower than 1%, in most developed countries, existing stock retrofit represents a major lever to reach commitments on climate change and non-renewable energy consumption mitigation. However, the identification of optimal sustainable retrofit programs, including actions planning over a time period, is still a difficult task for professionals.This thesis aims at producing knowledge in order to contribute to decision support for efficient energy retrofit programs identification, through the application of different multi-criteria optimization techniques. The solutions (sequential building energy retrofit programs) are optimized both on their content and planning. The content refers to the combination of retrofit measures considered. These address holistically building envelopes (thermal insulation, windows replacement, window to wall ratios), and the replacement of equipment for ventilation, heating and DHW production. For each of these measures, various options are considered. The planning corresponds to the permutation of these measures, defining a time sequence for implementation. The solutions are evaluated on a multi-criteria and life cycle basis. The objective functions considered target environmental impacts evaluated using LCA (Life Cycle Assessment), some financial indicators and occupants' well-being through thermal comfort in summer. Life cycle assessment and life cycle cost models, using building dynamic thermal simulation for heating load and thermal comfort evaluation, are implemented to assess solutions performances.Considering the problem mathematical nature (multi-criteria, combinatorial, discrete variables, implicit non-linear objective functions), two suitable multi-criteria optimization techniques have been studied: multi-criteria genetic algorithm (NSGA-II) and dynamic programming. In the genetic approach, the modelling of each solution by a pair of chromosomes allowed to identify efficient sequential energy retrofit programs and analyse Pareto compromise surfaces, in terms of solutions features, performances and relationships in between criteria. Then, the representation of the problem on a sequential graph enabled us to apply dynamic programming, to compare both the genetic approximate solutions, and the results of some short- term approaches to the exact Pareto frontier. The search for exact solutions also been exploited to perform sensitivity analysis on different modelling parameters such as heating temperature setting, energy prices evolution or materials lifespan. Real life budget constraints have been incorporated to build a constrained multi-criteria genetic optimisation method, suitable to study retrofit strategies under financing plans. At the end, the genetic approach has been extended from building scale to stock scale and exact optimization has been used to characterize building types in terms of energy retrofit.The benefits of these methods have been illustrated on case studies. Knowledge has been produced in terms of multi criteria optimization methodology, applied to sequential energy retrofit, and understanding of building stocks evolution. These developments contribute to decision aiding; providing decision makers with efficient energy retrofit strategies and a description of the comprise surface, at the building or building stock scale, on a multi- criteria basis, over life cycle
|
10 |
Optimisation multicritères et applications aux systèmes multi-processeurs embarqués / Multi-Criteria Optimization and its Application to Multi-Processor Embedded SystemsLegriel, Julien 04 October 2011 (has links)
Dans cette thèse nous développons de nouvelles techniques pour résoudre les problèmes d'optimisation multi-critère. Ces problèmes se posent naturellement dans de nombreux domaines d'application (sinon tous) où les choix sont évalués selon différents critères conflictuels (coûts et performance par exemple). Contrairement au cas de l'optimisation classique, de tels problèmes n'admettent pas en général un optimum unique mais un ensemble de solutions incomparables, aussi connu comme le front de Pareto, qui représente les meilleurs compromis possibles entre les objectifs conflictuels. La contribution majeure de la thèse est le développement d'algorithmes pour trouver ou approximer ces solutions de Pareto pour les problèmes combinatoires difficiles. Plusieurs problèmes de ce type se posent naturellement lors du processus de placement et d'ordonnancement d'une application logicielle sur une architecture multi-coeur comme P2012, qui est actuellement développé par STMicroelectronics. / In this thesis we develop new techniques for solving multi-criteria optimization problems. Such problems arise naturally in many (if not all) application domains where choices are evaluated according to two or more conflicting criteria such as price vs. performance. Unlike ordinary optimization, such problems typically do not admit a unique optimum but a set of incomparable solutions, also known as the Pareto Front, which represent the best possible trade-offs between the conflicting goals. The major contribution of the thesis is the development of algorithms for finding or approximating these Pareto solutions for hard combinatorial problems that arise naturally in the process of mapping and scheduling application software on multi-core architectures such as P2012 which is currently being developed by ST Microelectronics.
|
Page generated in 0.1385 seconds